ESTUDIO BIBLIOGRÁFICO SOBRE BATERÍAS DE ION-LITIO PARA VEHÍCULO ELÉCTRICO (BIBLIOGRAPHICAL STUDY ON LITHIUM-ION BATTERIES FOR ELECTRIC VEHICLES)
Resumen
Se realiza un estudio bibliográfico sobre baterías recargables de ion-Li, comenzando con las investigaciones sobre los más comunes materiales químicos usados en cátodo, electrolito, separador y ánodo, en la batería. Finalmente se hace una revisión sobre algunos resultados reportados en la literatura, de las alternativas de optimización para baterías de ion Li, en los electrolitos. Todo esto con la finalidad de observar y discutir la eficiencia en el potencial eléctrico, densidad de carga y/o descarga, vida útil, seguridad, y costo, de los componentes o del sistema completo de la batería, para ser usadas en vehículos eléctricos.
Palabras Claves: Ánodo, cátodo, electrolito sólido, iones de litio, separador.
Abstract
A bibliographic study on rechargeable Li-ion batteries is carried out, beginning with the investigations on the most common chemical materials used in cathode, electrolyte, separator, and anode, in the battery. Finally, a review of some results reported in the literature is made, of the optimization alternatives for Li-ion batteries, in the electrolytes. All this with the purpose of observing and discussing the efficiency in electrical potential, charge and/or discharge density, useful life, safety, and cost, of the components or of the complete battery system, to be used in electric vehicles.
Keywords: Anode, cathode, lithium ions, separator, solid electrolyte.
Texto completo:
794-813 PDFReferencias
Aifantis, K.E., S. Hackney, and R. Vasant Kumar, High Energy Density Lithium Batteries. 2010, Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA.
Arya, A. L. Sharma1, Polymer electrolytes for lithium-ion batteries: a critical study, Ionics, vol. 23, no. 1, pp. 497-540,
Balducci, Ionic Liquids in Lithium-Ion Batteries, Topics in Current Chemistry, vol. 375, pp. 20, 2017.
Batería - Concepto, tipos de baterías y cómo funcionan. (2013). Retrieved March 3, 2022, from Concept website: https://concepto.de/bateria/.
C. Wang, Y. Li, Y. S. Chui, Q. H. Wu, X. Chena, W. Zhang, Three-dimensional Sn–graphene anode for high-performance lithium-ion batteries, Nanoscale, vol. 5, no. 21, pp. 10599-10604, 2013.
Contestabile, M., et al., Battery electric vehicles, hydrogen fuel cells and biofuels. Which will be the winner? Energy & Environ. Sci., 2011.
D. Tang, L. Ben, Y. Sun, B. Chen, Z. Yang, L. Gu, X. Huang, Electrochemical behavior and Surface structural change of LiMn2O4 charged to 5.1 V, Journal of Materials Chemistry A, vol. 2, no. 35, pp. 14519-14527, 2014.
E. Antolini, LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behavior and transport properties, Solid State Ionics, vol. 170, no. 3-4, pp. 159-171, 2004.
E. Kamali Heidari, A. Kamyabi-Gol, M. Heydarzadeh Sohi, A. Ataie, Electrode Materials for Lithium-Ion Batteries: A Review, Journal of Ultrafine Grained and Nanostructured Materials, vol. 51, no. 1, pp. 1-12, 2018.
G. Liang, V. K. Peterson, K. W. See, Z. Guo, W. K. Pang, Developing high-voltage spinel LiNi0.5Mn1.5O4 cathodes for high-energy-density lithium-ion batteries: current achievements and future prospects, Journal of Materials Chemistry A, pp. 1-52, 2020.
G. T. Kim, S. Jeong, M. Z. Xue, A. Balducci, M. Winter, S. Passerin, F. Alessandrini, G. Appetecchi, Development of ionic liquid-based lithium.
Global Battery Market Trends, Share, Size, Stats & Analysis 2019-2027. [Online]. Available: https:// www.inkwoodresearch.com/reports/global- battery-market/. [Accessed: 28-Feb-2020].
Grandi, S., et al., PWA Doped SiO2 PEG hybrid Materials of Class II. Materials Sciences and Applications, 2010. 1: p. 285-291.
H. Xiong, E. J. Dufek, and K. L. Gering, Batteries, vol. 2–5. 2018.
J. Huang, H. Liu, T. Hu, Y. S. Meng, J. Luo, Enhancing the electrochemical performance of Li-rich layered oxide Li1.13Ni0.3Mn0.57O2 via WO3 dopaje and accompanying spontaneous surface phase formation, Journal of Power Sources, vol. 375, no. 1, pp. 21-28, 2018.
J. Zhang, T. Huang, Z. Liu, A. Yu, Mesoporous Fe2O3 nanoparticles as high-performance anode materials for lithium-ion batteries, Electrochemistry Communications, vol. 29, no. 1, pp. 17-20, 2013.
John Fredy Vélez Santa, Desarrollo de electrodos y electrolitos para baterías sólidas de ión litio en lámina delgada obtenidos por sol-gel, Tesis Doctoral, U.A Madrid, Fac. de C, dep Quím Inorganica.
Josefa Isasi Marín, Marta Pérez Estébanez. (2009). Aspectos más relevantes sobre las investigaciones realizadas en conductores iónicos rápidos con aplicación en baterías recargables. Madrid, España: Real Sociedad Española de Química.
Julien, C., Technological applications of solid state ionics. Materials Science and Engineering: B, 1990. 6(1): p. 9-28.
K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, LixCoO2 (0
L. Chen, L. Cao, X. Ji, S. Hou, Q. Li, J. Chen, C. Yang, N. Eidson, C. Wang, enabling safe aqueous lithium-ion open batteries by suppressing oxygen reduction reaction, NATURE COMMUNICATIONS, vol. 11, pp. 2638, 2020.
L. Xia, S. Lee, Y. Jiang, Y. Xia, G. Z. Chen, Z. Liu, Fluorinated Electrolytes for Li-Ion Batteries: The Lithium Difluoro (oxalato) borate Additive for Stabilizing the Solid Electrolyte Interphase, ACS Omega, vol. 2, no. 12, pp. 8741-8750, 2017.
Lavela Cabello, P. and J.L. Tirado Coello, Baterías Avanzadas. 1999, Córdoba: Servicio de Publicaciones de la Universidad de Córdoba. 21
Maldonado Manso, M.P., Preparación, Cristaloquímica y Comportamiento Eléctrico de Electrolitos Sólidos de Estequiometría NASICON, in Departamento de Química Inorgánica, Cristalografía y Minerología2004, Universidad de Málaga: Málaga. p. 355.
N. Bensalah, H. Dawood, Review on Synthesis, Characterizations, and Electrochemical Properties of Cathode Materials for Lithium-Ion Batteries, Journal of Material Science & Engineering, vol. 5, no. 4, pp. 1000258, 2016.
N. Gabriel-Orsetti, Gustavo Suárez y Gabriel Lorenzo, Obtención De Materiales Para Electrolitos Sólidos De Baterías De Litio En Capa Delgada Basados En Zirconato De Litio (Li2zro3). Estudio, Optimización Y Correlación De Variables. Vol. 7 Núm. 2 (2020): Investigación Joven - EBEC 2020.
P. Roziera, J. M. Tarasconb, Review—Li-Rich Layered Oxide Cathodes for Next-Generation Li-Ion Batteries: Chances and Challenges, Journal of The Electrochemical Society, vol. 162, no. 14, pp. A2490-A2499, 2015.
Q. Li, J. Chen, L. Fan, X. Kong, Y. Lu, Progress in electrolytes for rechargeable Li-based batteries and beyond, Green Energy & Environment, vol. 1, no. 1, pp. 18-42, 2016.
Quintero, V., Che, O., Ching2, E., Auciello, O., De Obaldía, E., & Quintero. (n.d.). Baterías de Ion Litio: características y aplicaciones Lithium Ion Batteries: features and applications. Retrieved from http://portal.amelica.org/ameli/jatsRepo/339/3392002003/3392002003.pdf.
Ravindra Kempaiah. (2019). Batería de iones de litio, ¿Cómo funciona? https://www.youtube.com/watch?v=ydCfLFJqaBw.
S. Iwamura, H. Nishihara, Y. Ono, H. Morito, H. Yamane, H. Nara, T. Osaka, T. Kyotani, Li-Rich Li-Si Alloy as A Lithium-Containing Negative Electrode Material Towards High Energy Lithium-Ion Batteries, SCIENTIFIC REPORTS, Vol. 5, pp. 8085, 2015.
Thangadurai, V. and W. Weppner, Recent progress in solid oxide and lithium ion conducting electrolytes research. Ionics, 2006. 12: p. 81-92.
W. J. Zhang, Structure and performance of LiFePO4 cathode materials: A review, Journal of Power Sources, vol. 196, no. 6, pp. 2962- 2970, 2011.
Whittingham, M.S., Electrical Energy Storage, and Intercalation Chemistry. Science, 1976. 192(4244): p. 1126-1127.
Y. J. Gu, J. Zhang, F. Yu, J. Wang, N. Nie, W. Li, LiFePO4 nanoparticles growth with preferential (010) face modulated by Tween-80, RSC Advances, vol. 5, no. 13, pp. 9745-9751, 2015. 32
Y. Sun, X. Hu, W. Luoa, Y. Huang, Self-assembled mesoporous CoO nanodisks as a long-life anode material for lithium-ion batteries, Journal of Materials Chemistry, vol. 22, no. 27, pp. 13826-13831, 2012.
Z. Fernando Antonio Padrón Jabib. (2013). MANUAL DE BATERÍAS Y ACUMULADORES. Bolivia: Universidad Pontificia Bolivariana. 37
Z. Liu, SW. Tay, L. Hong, y JY. Lee, (2011) Caracterizaciones físicas y electroquímicas de nanopartículas de Ag incorporadas en LiFePO4. Revista de electroquímica de estado sólido, 15, 205-209.
http://dx.doi.org/10.1007/s10008-010-1085-x.
Z. Wang, H. Q. Lu, Y. P. Yin, X. Y. Sun, X. T. Bai, X. L. Shen, W. D. Zhuang, S. G. Lu, FePO4-coated Li [Li0.2Ni0.13Co0.13Mn0.54] O2 with improved cycling performance as cathode material for Li-ion batteries, RARE METALS, vol. 36, no. 1, pp. 899-904, 2017.
Z. Zhang, X. Zhang, X. You, M. Zhang, M. D. Walle, J. Wang, Y. Li, Y. N. Liu, 3D well-interconnected NiO–graphene–carbon nanotube nanohybrids as high-performance anode materials for Li-ion batteries, Journal of Nanoparticle Research, vol. 18, pp. 247, 2016.
Z. Zhu, D. Yu, Y. Yang, C. Su, Y. Huang, Y. Dong, I. Waluyo, B. Wang, A. Hunt, X. Yao, J. Lee, W. Xue, J. Li, Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment, Nature Energy, vol. 4, no. 1, pp. 1049-1058, 2019.
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx