CONTROL DIGITAL DE POLOS PARA LA VARIACIÓN DE VELOCIDAD Y TORQUE EN UN MOTOR DE FLUJO AXIAL CON IMANES PERMANENTES (DIGITAL POLE CONTROL FOR SPEED AND TORQUE VARIATION IN AN AXIAL FLUX MOTOR WITH PERMANENT MAGNETS)
Resumen
El uso de energías renovables en la industria de transporte ha impulsado el desarrollo de motores eléctricos de mayor potencia y sistemas inteligentes de tracción electrónica. No obstante, el acoplamiento típico entre ambos continúa siendo mecánico, lo cual en conjunto, merma su eficiencia y vida útil. Por otro lado, configuraciones de motores flujo axial, hacen posible prescindir de acoplamientos mecánicos, por su alto torque a bajas velocidades y aplicación directa en las ruedas de los vehículos. En este trabajo se presenta el diseño de un sistema de conmutación digital de polos, aplicado a un motor de flujo axial de imanes permanentes para el control de velocidad y torque a velocidad constante. El desempeño del sistema es evaluado con mediciones experimentales; comprobando la efectividad del diseño, al obtener torques de hasta 1.784Nm sin acoplamientos mecánicos extras y errores de regulación de velocidad máximos de 8.43 %.
Palabras Clave: Control digital, Conmutación de polos, Motor de flujo axial
Abstract
The use of renewable energies in the transportation industry has prompted the development of higher power electric motors and intelligent electronic traction systems. However, the typical coupling between the two continues to be mechanical, which reduces its efficiency and useful life. On the other hand, permanent magnet axial flux motor configurations make it possible to dispense with mechanical couplings, due to their high torque at low speeds due to their direct application on the wheels of vehicles. In this work, the design of a digital pole commutation system is presented, applied to an axial flux motor with permanent magnets for speed and torque control at constant speed. The performance of the system is evaluated with experimental measurements; proving the effectiveness of the design, obtaining torques of up to 1,784Nm without extra mechanical couplings and maximum speed regulation errors of 8.43%.
Keywords: Digital control, Pole commutation, Axial flux motor.
Texto completo:
448-466 PDFReferencias
Abdullah, Ramasamy, Ramar, and Aravind, Design consideration of dual axial flux motor for electric vehicle applications, in 2015 IEEE Conference on Energy Conversion (CENCON), pp. 72-77, Oct. 2015.
Aydin, Gulec, Demir, Akyuz, and Yolacan, Design and validation of a 24- pole coreless axial flux permanent magnet motor for a solar powered vehicle, in 2016 XXII International Conference on Electrical Machines (ICEM), pp. 1493-1498, Sept. 2016.
Gieras, Wang, and Kamper, Axial Flux Permanent Magnet Brushless Machines. Springer Science & Business Media, Sept. 2004.
Hegazy, Barrero, Mierlo, Baghdad, Lataire, and Coosemans, Control, analysis, and comparison of different control strategies of electric motor for battery electric vehicles applications, in 2013 15th European Conference on Power Electronics and Applications (EPE), pp. 1-13, Sept. 2013.
Howlader, Urasaki, Senjyu, and Yona, Wide-Speed-Range optimal PAM control for permanent magnet synchronous motor, in 2009 International Conference on Electrical Machines and Systems, pp. 1-5, Nov. 2009.
Lambert, Biglarbegian., and Mahmud, A Novel Approach to the Design of Axial-Flux Switched-Reluctance Motors, Machines, vol. 3, pp. 27-54, Mar. 2015.
Luo, and Zhao, Relationship between iron loss and pole-pair number in flux- switching permanent-magnet machines, in 2017 IEEE International Magnetics Conference (INTERMAG), pp. 1-1, Apr. 2017.
Madhavan and Fernandes, Axial Flux Segmented SRM with a Higher Number of Rotor Segments for Electric Vehicles, IEEE Transactions on Energy Conversion, vol. 28, pp. 203-213, Mar. 2013.
Magill, Krein, and Haran, Equivalent circuit model for pole-phase modulation induction machines, in 2015 IEEE International Electric Machines Drives Conference (IEMDC), pp. 293-299, May 2015.
Rahman, Fahimi, G. Suresh, A. V. Rajarathnam, and M. Ehsani, Advantages of switched reluctance motor applications to EV and HEV: design and control issues, IEEE Transactions on Industry Applications, vol. 36, pp. 111-121, Jan. 2000.
Reddy, Umesh, Rao, Kumar, and Kumar, A five speed 45-phase induction motor drive with pole phase modulation for electric vehicles, in 2017 IEEE International Conference on Industrial Technology (ICIT), pp. 258-263, Mar. 2017.
Sergeant, Vansompel, Dupré, and Bossche, Losses in VSI-PWM fed axial flux machines, in 2014 16th European Conference on Power Electronics and Applications, pp. 1-6, Aug. 2014.
Shao, Hua, Zhu, Tong, Zhao, Yin, Wu, and Cheng, Influence of Rotor-Pole Number on Electromagnetic Performance in 12-Phase Redundant Switched Flux Permanent Magnet Machines for Wind Power Generation, IEEE Transactions on Industry Applications, vol. 53, pp. 3305-3316, July 2017.
Swamy, Kume, Maemura, and S. Morimoto, Extended high-speed operation via electronic winding-change method for AC motors, IEEE Transactions on Industry Applications, vol. 42, pp. 742-752, May 2006.
Takatsuka, H. Hara, K. Yamada, A. Maemura, and T. Kume, A wide speed range high efficiency EV drive system using winding changeover technique and SiC devices, in 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA), pp. 1898-1903, May 2014.
Yang, Liang, and Xing, Design, and application of axial-flux permanent magnet wheel motors for an electric vehicle, in AFRICON 2009, pp. 1-5, Sept. 2009.
Zhu, Cheng, and Xue, Torque analysis for in-wheel switched reluctance motors with varied number of rotor poles, in 2016 International Symposium on Electrical Engineering (ISEE), pp. 1-5, Dec. 2016.
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx