DISEÑO VLSI DE UN SUMADOR DE PUNTO FLOTANTE USANDO LAS HERRAMIENTAS DE ALLIANCE (VLSI DESIGN OF FLOATING POINT ADDER USING ALIANCE TOOLS)

Elsa Denise Guerrero Eufracio, Jesús Alberto Carreón Rosales, Sofía Cordero Márquez, Alan Alfonso Cossio Silva, Juan Fernando Rodríguez Ramírez, Abimael Jiménez Pérez

Resumen


Resumen
La suma es la operación clave en los sistemas digitales y el sumador de punto flotante se usa con frecuencia para la suma de números reales porque la representación de punto flotante proporciona un amplio rango dinámico. En este artículo se presenta el diseño VLSI (Very Large Scale Integration) de un circuito sumador de punto flotante. El algoritmo se implementó en lenguaje de descripción de hardware VHDL. Posteriormente se utilizan las herramientas de software libre de Alliance para realizar el proceso de síntesis, con el cual se obtuvo el layout del circuito. El diseño presentó un consumo de área de 959,250 , un retardo de 20.8 ns y se utilizaron 4,604 transistores.
Palabras Clave: Área, Diseño VLSI, PF, Retardo, VHDL.

Abstract
Addition is the key operation in digital systems, and floating-point adder is frequently used for real number addition because floating-point representation provides a large dynamic range. This paper presents the VLSI (Very Large Scale Integration) design of a floating point adder circuit. The algorithm was implemented in hardware description language VHDL. Subsequently, Alliance free software tools were used to perform the synthesis process, obtaining the circuit layout in generic units of lambda. The design presented an area consumption of 959,250, a delay of 20.8 ns and 4,604 transistors were used.
Keywords: Area, Delay, Floating point, VHDL, VLSI Design

Texto completo:

519-533 PDF

Referencias


Akkas, A. Dual-mode floating-point adder architectures. J. Syst. Arch. 54, 1129–1142 2008.

Behrooz, P. Computer Arithmetic: Algorithms and Hardware Designs; Oxford University Press: New York, NY, USA, Volume 19, pp. 512583–512585, 2000.

Chi Huang, Xinyu Wu, Junmei Lai, Chengshou Sun and Gan Li. “A Design of High Speed Double Precision Floating Point Adder Using Macro Modules.” Design Automation Conference, Proceedings of the ASP-DAC. Vol2, pp D11-D12. Asia and South Pacific DOI:10.1109/ASPDAC.2005.

Coonen, J. T. Special Feature an Implementation Guide to a Proposed Standard for Floating-PointArithmetic. Computer 1980, 13, 68–79.

Ehliar, A. Area efficient floating-point adder and multiplier with IEEE-754 compatible semantics. In Proceedings of the 2014 International Conference on Field-Programmable Technology (FPT), Shanghai, China. pp. 131–138, 10–12 December 2014.

Eisen, L.E.; Elliott, T.A.; Golla, R.T.; Olson, C.H. Method and System for Performing a High Speed Floating Point Add Operation. U.S. Patent No. 5,790,445, 4 August 1998.

Goldberg, D. What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv. , 23, 5–48. (CSUR) 1991. [CrossRef]

Gorshtein, V.Y.; Grushin, A.I.; Shevtsov, S.R. Floating Point Addition Methods and Apparatus. U.S. Patent 5,808,926, 15 September 1998.

Govindu, G.; Zhuo, L.; Choi, S.; Prasanna, V. Analysis of high-performance floating-point arithmetic on FPGAs. In Proceedings of the 18th International Parallel and Distributed Processing Symposium, Santa Fe, NM, USA, 26–30, p. 149. April 2004.

Haener, T.; Roetteler, M.; Svore, K. Quantum Circuit Libraries for Floating-Point Arithmetic. U.S. Patent No. 10,699,209, 30 June 2020.

Hassan, H.S.; Ismail, S.M. CLA based Floating-point adder suitable for chaotic generators on FPGA. In Proceedings of the 2018 30th International Conference on Microelectronics (ICM), Sousse, Tunisia. pp. 299–302. 16–19 December 2018.

IEEE Computer Society (2019-07-22). IEEE Standard for Floating-Point Arithmetic. IEEE STD 754-2019. IEEE. pp. 1–84. doi:10.1109/IEEESTD.2019.8766229. ISBN 978-1-5044-5924-2. IEEE Std 754-2019.

Iourcha, K.I.; Nguyen, A.; Hung, D. Fast Adder/Subtractor for Signed Floating Point Numbers. U.S. Patent 6,175,851, 16 January 2001.

Joldes, M.; Muller, J.-M. Algorithms for Manipulating Quaternions in Floating-Point Arithmetic. In Proceedings of the IEEE 27th Symposium on Computer Arithmetic (ARITH), Portland, OR, USA, 7–10 June 2020.

Karlstrom, P.; Ehliar, A.; Liu, D. High performance, low latency fpga based floating point adder and multiplier units in a virtex 4. In Proceedings of the 2006 NORCHIP, Linkoping, Sweden. pp. 31–34, 20–21 November 2006.

Kawaguchi, T. Floating Point Addition and Subtraction Arithmetic Circuit Performing Preprocessing of Addition or Subtraction Operation Rapidly. U.S. Patent 5,931,896, 3 August 1999.

Langhammer, M. Variable Precision Floating-Point Adder and Subtractor. U.S. Patent No. 10,055,195, 21 August 2018.

Langhammer, M.; Pasca, B. Floating-Point Adder Circuitry with Subnormal Support. U.S. Patent Application No. 15/704,313, 14 March 2019.

Lutz, D.R.; Hinds, C.N. Data Processing Apparatus and Method for Performing Floating Point Addition. U.S. Patent No. 7,433,911, 7 October 2008.

Malik, A.; Ko, S.-B. Effective implementation of floating-point adder using pipelined LOP in FPGAs. In Proceedings of the Canadian Conference on Electrical and Computer Engineering, Saskatoon, SK, Canada,pp. 706–709. 1–4 May 2005.

Mathis, B.; Stine, J. A Well-Equipped Implementation: Normal/Denormalized Half/Single/Double Precision IEEE 754 Floating-Point Adder/Subtracter. In Proceedings of the 2019 IEEE 30th International Conference on Application-specific Systems, Architectures and Processors (ASAP), New York, NY, USA. Volume 2160, pp. 227–234. 15–17 July 2019.

Nakayama, T. Hardware Arrangement for Floating-Point Addition and Subtraction. U.S. Patent No. 5,197,023, 23 March 1993.

Nannarelli, A. Tunable Floating-Point Adder. IEEE Trans. Comput. 68, 1553–1560. 2019.

Nystad, J. Floating-Point Adder. U.S. Patent No. 9,009,208, 14 April 2015.

Oberman, S.F. Floating Point Arithmetic Unit Including an Efficient Close Data Path. U.S. Patent No. 6,094,668, 25 July 2000.

Oberman, S.F.; Flynn, M.J. Design issues in division and other floating-point operations. IEEE Trans. Comput. 46, 154–161. 1997 [CrossRef]

Pangal, A.; Somasekhar, D.; Vangal, S.R.; Hoskote, Y.V. Floating Point Adder. U.S. Patent No. 6,889,241, 3 May 2005.

Pappalardo, F.; Visalli, G.; Scarana, M. An application-oriented analysis of power/precision trade-off in fixed and floating-point arithmetic units for VLSI processors. In Circuits, Signals, and Systems; Citeseer: Clearwater Beach, FL, USA. pp. 416–421, 2004.

Quinnell, E.C. High Performance Floating-Point Adder With Full in-Line Denormal/Subnormal Support. U.S. Patent No. 10,108,398, 23 October 2018.

Resnick, D.R.; Moore, W.T. Floating-Point Adder Performing Floating-Point and Integer Operations. U.S. Patent 6,529,928, 4 March 2003.

Seidel, P.-M.; Even, G. Fast IEEE Floating-Point Adder. U.S. Patent 10/138,659, 20 March 2003.

Stiles, D. Method and Apparatus for Performing Floating Point Addition. U.S. Patent No. 5,764,556, 9 June 1998.

Tao, Y.; Deyuan, G.; Xiaoya, F.; Xianglong, R. Three-operand

floating-point adder. In Proceedings of the 2012 IEEE 12th International Conference on Computer and Information Technology, Chengdu, China. pp. 192–196 27–29 October 2012.

Thompson J., Nandini Karra & M. J. Schulte, “A 64-bit Decimal Floating-point Adder”. IEEE Computer Society Annual on VLSI Systes Design. DOI: 0-7695-2097-9/04. 2004.

Villalba, J.; Hormigo, J.; González-Navarro, S. Fast HUB Floating-point Adder for FPGA. IEEE Trans. Circuits Syst. II Express Briefs, 66, 1028–1032. 2018.

Xu, J.; Wang, H. Desynchronize a legacy floating-point adder with operand-dependant delay elements. In Proceedings of the 2011 IEEE International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, Brazil, 15–18 May 2011; pp. 1427–1430.

Yamada, H.; Murabayashi, F.; Yamauchi, T.; Hotta, T.; Sawamoto, H.; Nishiyama, T.; Kiyoshige, Y.; Ido, N.; Hitachi Ltd. Floating-Point Addition/substraction Processing Apparatus and Method Thereof. U.S. Patent 5,684,729, 4 November 1997.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas