ESTABILIZACIÓN DEL CARRO PÉNDULO INVERTIDO APLICANDO CONTROL ÓPTIMO NO LINEAL VARIANTE EN TIEMPO (STABILIZATION OF A CART INVERTED PENDULUM APPLYING NONLINEAR TIME-VARYING OPTIMAL CONTROL)

Jorge Antonio Cardona Soto, Israel U. Ponce, Israel Soto, Manuel de Jesús Nandayapa Alfaro

Resumen


Resumen
El control óptimo LQR es una opción adecuada para la obtención de las ganancias de control realimentado, sin embargo, en sistemas dinámicos no lineales su aplicación se ve limitada a una región local. En este trabajo se propone resolver el problema de control óptimo del tipo LQR, utilizando un sistema equivalente lineal en vez de llevar a cabo la linealización, esto permite extender la región donde el controlador LQR puede funcionar adecuadamente. Para probar el método propuesto, se realizan simulaciones donde se aplica el control LQR de los sistemas linealizado y equivalente lineal al sistema carro péndulo invertido. Los resultados muestran que el sistema equivalente lineal tiene un mejor índice de desempeño que el sistema linealizado.
Palabras Clave: carro péndulo invertido, control óptimo, linealización, LQR.

Abstract
Optimal control, based in LQR, is a suitable option for obtaining feedback control gains, however, in non-linear dynamic systems its application is limited to a local region. In this work, it is proposed to solve the optimal control problem (based in LQR) using a linear equivalent system. To evaluate the proposed method, the LQR control of the linearized and linear equivalent systems is applied in a simulation environment to a cart inverted pendulum system. The results show that the linear equivalent system has a better performance index than the linearized system.
Keywords: cart inverted pendulum, linearization, LQR, optimal control.

Texto completo:

246-268 PDF

Referencias


Angkeaw, K., Pongyart, W., y Prommee, P. Design and Implementation of FPAA based LQR Controller for Magnetic Levitation Control System. 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), pp. 411-414. 2019.

Boubaker, O. The inverted pendulum benchmark in nonlinear control theory: a survey, International Journal of Advanced Robotic Systems, 2013.

Engin, M. Embedded LQR controller design for self-balancing robot. 2018 7th Mediterranean Conference on Embedded Computing (MECO), pp. 1-4. 2018.

Habib, M. K., y Avankoso, S. A. "Modeling and Control of a Double Inverted Pendulum using LQR with Parameter Optimization through GA and PSO," 2020 21st International Conference on Research and Education in Mechatronics (REM), pp. 1-6, 2020.

Jacknoon, A. y Abido, M. A. Ant Colony based LQR and PID tuned parameters for controlling Inverted Pendulum, 2017 International Conference on Communication, Control, Computing and Electronics Engineering (ICCCCEE), pp. 1-8. 2017.

Kuantama, E., Tarca, I., y Tarca, R. Feedback Linearization LQR Control for Quadcopter Position Tracking. 2018 5th International Conference on Control, Decision and Information Technologies (CoDIT), pp. 204-209. 2018.

Li, W., Ding, H. y Cheng, K. "An investigation on the design and performance assessment of double-PID and LQR controllers for the inverted pendulum, Proceedings of 2012 UKACC International Conference on Control, pp. 190-196, 2012.

Luhao, W. y Zhanshi, S. LQR-Fuzzy Control for Double Inverted Pendulum. 2010 International Conference on Digital Manufacturing & Automation, pp. 900-903, 2010.

Lustosa, L. R., Cardoso-Ribeiro, F., Defaÿ, F., y Moschetta, J.-M. A new look at the uncontrollable linearized quaternion dynamics with implications to LQR design in underactuated systems. 2018 European Control Conference (ECC), pp. 3120-3125. 2018.

Morales, S., Magallanes, J., Delgado, C., y Canahuire, R. LQR Trajectory Tracking Control of an Omnidirectional Wheeled Mobile Robot. 2018 IEEE 2nd Colombian Conference on Robotics and Automation (CCRA), pp. 1-5. 2018.

Nasir, A. N. K., Ahmad, M. A., Rahmat, M. F. Performance comparison between LQR and PID Controllers for an inverted pendulum system. AIP Conference Proceedings, Vol. 1052, No. 1, 2008.

Prasad, L. B., Tyagi B. y Gupta, H. O. Modelling and Simulation for Optimal Control of Nonlinear Inverted Pendulum Dynamical System Using PID Controller and LQR, 2012 Sixth Asia Modelling Symposium, pp. 138-143, 2012.

Trimpe, S., Millane, A., Doessegger, S. y D'Andrea, R. A Self-Tuning LQR Approach Demonstrated on an Inverted Pendulum, IFAC Proceedings Volumes, Vol. 47, No. 3, pp. 11281-11287, 2014.

Vinodh Kumar, E. y Jerome, J., Robust LQR Controller Design for Stabilizing and Trajectory Tracking of Inverted Pendulum, Procedia Engineering, Vol. 64, pp. 169-178, 2013.

Wang, H., Dong, H., He, L., Shi, Y. y Zhang, Y. Design and Simulation of LQR Controller with the Linear Inverted Pendulum, 2010 International Conference on Electrical and Control Engineering, pp. 699-702, 2010.

Xiong, X. y Wan, Z. The simulation of double inverted pendulum control based on particle swarm optimization LQR algorithm, 2010 IEEE International Conference on Software Engineering and Service Sciences, pp. 253-256, 2010.

Xu, J.-X., Lim, J. L., Mamun, A., Guo, Z.-Q., y Lee, T. H. An optimal linear controller design for an underactuated unicycle. IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society, pp. 4266-4271. 2011.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas