EVALUACIÓN DE ALGORITMOS DE OPTIMIZACIÓN METAHEURÍSTICA APLICADOS A ROBÓTICA (EVALUATION OF METAHEURISTIC OPTIMIZATION ALGORITHMS APPLIED TO ROBOTICS)

Dizahab Sehuveret Hernández, Jorge Alberto García Muñoz

Resumen


Resumen
El desarrollo de los Vehículos Autónomos Terrestres es un tema ampliamente discutido por parte de la comunidad científica internacional. La planificación del camino a seguir por el robot constituye un elemento importante para lograr un cumplimiento satisfactorio de misiones en las que no se necesite la intervención humana sobre el vehículo. Para la generación de la ruta, se propone en este trabajo la utilización de varios métodos de optimización metaheurísticos: algoritmos genéticos, búsqueda armónica y optimización por colonia de hormigas; como una manera de lograr caminos cortos y sin colisiones para el desplazamiento del robot. Una descripción de la implementación de los métodos es presentada y una comparación con vistas a su desempeño es proporcionada. Los resultados teóricos son apoyados mediante experimentos simulados, que prueban las situaciones en las que es preferible la utilización de cada algoritmo metaheurístico y los beneficios que aportan a la convergencia a la solución o ruta deseada.
Palabras clave: algoritmos genéticos, búsqueda armónica, colonia de hormigas, metaheurística, optimización, robótica.

Abstract
The development of Autonomous Ground Vehicles is a topic widely discussed by the international scientific community. The planning of the route for the robot is an important element to achieve a satisfactory fulfillment of missions in which human intervention on the vehicle is not required. For the generation of the route, the use of several metaheuristic optimization methods is proposed in this work: genetic algorithms, harmony search and ant colony optimization; as a way to achieve short, collision-free paths for the robot to travel. A description of the implementation of the methods is presented and a comparison regarding their performance is provided. Theoretical results are supported by simulated experiments, which expose the situations in which the use of each metaheuristic algorithm is preferable and the benefits they bring to convergence to the desired solution or route.
Keywords: genetic algorithms, harmony search, ant colony, metaheuristics, optimization, robotics.

Texto completo:

320-337 PDF

Referencias


Elhoseny, M., Tharwat, A., & Hassanien, A. E., “Bezier curve based path planning in adynamic field using modified genetic algorithm,” Journal of Computational Science, vol.25, pp.339-350, 2018.

Sørensen A. J., Candeloro, M., & Lekkas, A. M., “A voronoi-diagram-based dynamicpath-planning system for underactuated marine vessels,”Control Engineering Practice,vol.61, pp.41 – 54, 2017.

Kamel, Mohamed S., Miao, Yun-Qian, Khamis, Alaa, & Karray, Fakhri, “A novel approach to path planning for autonomous mobile robots,” Control and Intelligent Systems, vol.39, no.4, 2011.

Kaboli, S. H. A., Selvaraj, J., & Rahim, N. A., “Rain-fall optimization algorithm: A population based algorithm for solving constrained optimization problems,” Journal of Computational Science, vol.19, pp.31 – 42, 2017.

Xin, J., Zhong, J., Yang, F., Cui, Y., & Sheng, J., “An improved genetic algorithm for path-planning of unmanned surface vehicle,” Sensors, vol.19, p.2640, Jun. 2019.

Xiaolin, D., Long, S., Zhang, Z., & Gong, D., “Mobile robot path planning based on ant colony algorithm with A* heuristic method,” Frontiers in neurorobotics, vol.13, no.15, Apr. 2019.

Li-min, Z., “An improved adaptive harmony search algorithm,” in Proc. International Conference on Computational Science and Engineering. Atlantis Press, Jul. 2015, pp.54–59.

Alomoush, A., Alsewari, A., Alamri, H., & Zamli, K., “Comprehensive review of the development of the harmony search algorithm and its applications,” IEEE Access, vol.7, pp.14233 – 14245, Ene. 2019.

Deng, W., Xu, J., & Zhao, H., “An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem,” IEEE Access, vol.7, pp.20281 – 20292, 2019.

Zeng, M. R., Xi, L., & Xiao, A. M., “The free step length ant colony algorithm in mobile robot path planning,” Advanced Robotics, vol.30, pp.1–6, Oct. 2016.

Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, 1st ed. USA: Addison-Wesley Longman Publishing Co., Inc., 1989.

Beasley, D., Bull, D. R., & Martin, R. R., “An overview of genetic algorithms: Pt1, fundamentals,” University Computing, vol.15, no.2, pp.58 – 69, 1993.

Osman, M., Abo-Sinna, M., & Mousa, A., “A solution to the optimal power flow using genetic algorithm,” Applied Mathematics and Computation, vol.155, no.2, pp.391 – 405, 2004.

Wang, Lanfei, Kan, Jiangming, Guo, Jun, & Wang, Chao, “3d path planning for the ground robot with improved ant colony optimization,” Sensors, vol.19, p.815, Feb. 2019.

Finn, C., & Levine, S. (2017, Mayo). Deep visual foresight for planning robot motion. In Proc. IEEE international conference on robotics and automation (ICRA) (p. 2786 - 2793). Singapore.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas