TRAJECTORY ANALYSIS FOR THE DIFFERENT STRATEGIES OF CIRCUIT DESIGN (ANÁLISIS DE TRAYECTORIA PARA LAS DIFERENTES ESTRATEGIAS DE DISEÑO DE CIRCUITOS)

Jorge Espinosa García, Fernando Reyes Cortés, Alexander Zemliak

Resumen


Abstract
Some design trajectories were analyzed using a generalized design methodology. The starting point of the design process was changed to obtain different trajectories and compare them by processor time. Study of the phase portrait, consisting of a family of trajectories, allows us to analyze the acceleration effect. A special line, called a separatrix, divides а set of trajectories into two parts: with and without possible acceleration. The numerical results of the design of passive and active electronic circuits prove that the optimal choice of the starting point of the design algorithm allows you to minimize the time of the design process.
Keywords: Control theory application, optimal start point selection, time-optimal design algorithm.

Resumen
Varias trayectorias de diseño se analizaron utilizando una metodología de diseño generalizada. El punto de partida del proceso de diseño se cambió para obtener diferentes trayectorias y compararlas por tiempo de procesador. El estudio del retrato de fase, que consiste en una familia de trayectorias, nos permite analizar el efecto de aceleración. Una línea especial, llamada separatrix, divide un conjunto de trayectorias en dos partes: con y sin aceleración posible. Los resultados numéricos del diseño de circuitos electrónicos pasivos y activos demuestran que la elección óptima del punto de partida del algoritmo de diseño le permite minimizar el tiempo del proceso de diseño.
Palabras clave: Aplicación de la teoría de control, algoritmo de diseño de tiempo óptimo, selección óptima del punto de inicio.

Texto completo:

373-389 PDF

Referencias


Alpaydin G., Balkir S., & Dundar G. An evolutionary approach to automatic synthesis of high performance analog integrated circuits. IEEE Transactions on Evolutionary Comp., 7, 240-252, 2003.

Brayton R. K., Hachtel G. D., & Sangiovanni-Vincentelli A. L. A survey of optimization techniques for integrated-circuit design. Proceedings IEEE, 69(10), 1334-1362, 1981.

George A. On block elimination for sparse linear systems. SIAM Journal of Numerical Analysis, 11, 585-603, 1984.

Hershenson M., Boyd S., & Lee T. Optimal design of a CMOS op-amp via geometric programming. IEEE Transactions on CAD of Integrated Circuits and Systems, 20(1), 1-21, 2001.

Kashirskiy I. S., & Trokhimenko Y. K. General optimization for electronic circuits, Kiev: Tekhnika, 1979.

Li F., Cai X., Gao L. Ensemble of surrogates assisted particle swarm optimization of medium scale expensive problems, Applied Soft Computing, vol. 74, 291-305, 2019.

Liu B., Wang Y., Yu Z., Liu L., Li M., Wang Z., Lu J., & Fernandez F. V. Analog circuit optimization system based on hybrid evolutionary algorithms. Integration the VLSI J., 42(2), 137-148, 2009.

Massobrio G., Antognetti P. Semiconductor device modelling with SPICE, N.Y.: Mc. Graw-Hill, Inc., 1993.

Nam D., Seo Y., Park L., Park C., & Kim B. Parameter optimization of an on-chip voltage reference circuit using evolutionary programming. IEEE Transactions on Evolutionary Comp., 5, 414-421, 2001.

Ochotta E. S., Rutenbar R. A., & Carley L. R. Synthesis of high-performance analog circuits in ASTRX/OBLX. IEEE Transactions on CAD of Integrated Circuits and Systems, 15(3), 273-294, 1996.

Osterby O., & Zlatev Z. Direct methods for sparse matrices. New York: Springer Verlag, 1983.

Passos F., Roca E., Castro López R., Fernández F. V. Radio-frequency inductor synthesis using evolutionary computation and gaussian-process surrogate modelling, Applied Soft Computing, vol. 60(C), 495-507, 2017.

Paulino N. F., Goes J., & Steiger-Garcao A. Design methodology for optimization of analog building blocks using genetic algorithms. Proceedings of Symposium on Circuits and Systems, 435-438, 2001.

Rabat N., Ruehli A. E., Mahoney G. W., & Coleman J. J. A survey of macromodelling. IEEE International Symposium on Circuits and Systems, 139-143, 1985.

Ridzuan M. R. M., Hassan E. E., Abdullah A. R., Bahaman N., & Kadir A. F. A. A new meta heuristic evolutionary programming (NMEP) in optimizing economic energy dispatch. J. Telecomm. Electron. Comp. Engineer., 8(2), 35-40, 2016.

Rizzoli V., Costanzo A., & Cecchetti C. Numerical optimization of broadband nonlinear microwave circuits. Proceedings of IEEE MTT-S International Symposium, (1), 335-338, 1990.

Robinson J., & Rahmat-Samii Y. Particle swarm optimization in electromagnetic. IEEE Transactions on Antennas and Propagation, 52(2), 397-407, 2004.

Ruehli A. E. (Ed.). Circuit analysis, simulation and design. part 2. Amsterdam: Elsevier Science Publishers, 1987.

Srivastava A, Kachru T., & Sylvester D. Low-power-design space exploration considering process variation using robust optimization. IEEE Transactions on CAD of Integrated Circuits, 26(1), 67-79, 2007.

Stehr G., Pronath M., Schenkel F., Graeb H., & Antreich K. Initial sizing of analog integrated circuits by centering within topology-given implicit specifications. Proceedings of the IEEE/ACM International Conference on CAD, 241-246, 2003.

Tadeusiewicz M., & Kuczynski A. A very fast method for the DC analysis of diode-transistor circuits. Circuits Systems and Signal Processing, 32(3), 433-451, 2013.

Venturelli G., Benini E., Laniewski-Wollk L. A Kriging-assisted multiobjective evolutionary algorithm, Applied Soft Computing, vol. 58, 155-175, 2017.

Yengui F., Labrak L., Frantz F., Daviot R., Abouchi N., & O’Connor I. A hybrid GA-SQP algorithm for analog circuits sizing, circuits and systems, Circuits and Systems, 3, 146-152, 2012.

Zadeh P. M., Sayadi M., Kosari A. An efficient metamodel-based multi-objective multidisciplinary design optimization framework, Applied Soft Computing, vol. 74, 760-782, 2019.

Zaman M. A., Gaffar M., Alam M. M., Mamun S. A., & Abdul Matin, M. Synthesis of antenna arrays using artificial bee colony optimization algorithm. Int. J. of Micro. and Optic. Technol., 6(8), 234-241, 2011.

Zemliak A. General methodology for system design, in the book: Modern Applied Mathematics Techniques in Circuits, Systems and Control, Editor N. Mastorakis, WSES Press, 150-155, 1999.

Zemliak A. M. Design of analogue networks by control theory methods, Part 1, Theory, Radioelectronics and Communications Systems, vol. 47, no. 5, 11-17, 2004.

Zemliak A. M. Analysis of dynamic characteristics of process of designing analogue circuits, Radioelectronics and Communications Systems, vol. 50, no. 11, 603-608, 2007.

Zemliak A. Analog circuit optimization on basis of control theory approach, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33, no. 6, 2180-2204, 2014.

Zemliak A., Reyes F., Vergara S. Study of different optimization strategies for analogue circuits, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Emerald Group Publishing Limited, vol. 35, no. 3, 927-942, 2016.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas