ESTUDIO TEÓRICO – EXPERIMENTAL DE PELÍCULAS DE GAN PARA SIMULACIÓN DE DIODO EMISOR DE LUZ (THEORETICAL – EXPERIMENTAL STUDY OF GAN FILMS FOR LIGHT-EMITTING DIODE SIMULATION)
Resumen
Este trabajo presenta el proceso de síntesis de películas de nitruro de galio (GaN) con sitios de nucleación de oro, y la síntesis de películas de GaN tipo p utilizando magnesio, mediante la técnica de depósito por vapor químico (CVD). Con el objetivo de estudiar el crecimiento del semiconductor, se empleó un diseño de experimentos factorial con temperatura, substrato y capa de oro como factores. Los resultados de la caracterización de los materiales de GaN y GaN:Mg fueron obtenidos mediante las técnicas de SEM, XRD, XPS, CL y PL. Con base a lo anterior, la presencia del contaminante Mg en el GaN tipo-p fue demostrada. También, la emisión característica del GaN y GaN:Mg en la región del ultravioleta (UV) y luminiscencia azul (BL) fue analizada. Mediante el estudio del estado del arte de GaN y COMSOL Multiphysics, se obtuvieron los resultados ópticos y eléctricos del diodo electroluminiscente de GaN/GaN:Mg. Como resultado, un voltaje de disparo de , eficiencias interna y luminosa del LED de 84 % y 210.7 lm/W, fueron obtenidos.
Palabras clave: GaN, unión p-n, Simulación COMSOL.
Abstract
The following work presents the synthesis process of gallium nitride films with gold nucleation sites, and the synthesis of p-type magnesium doped GaN films, employing the chemical vapor deposition technique (CVD). The study of semiconductor growth was reached using a factorial design with temperature, substrate and gold films as factors. Wurtzite GaN and GaN:Mg were analyzed through CL, SEM, EDS, PL and XPS characterization results. The presence of Mg in p-GaN was demonstrated by XPS results. Also, the characteristic UVL and BL of GaN and GaN:Mg were analyzed. Electrical and optical results of GaN based electroluminescent diode were obtained from GaN state of the art study and COMSOL Multiphysics with threshold voltage . Internal and luminous efficiencies of the simulated LED with 84 % and 210.7 lm/W, respectively, reported majority contribution of direct recombination in the device.
Keywords: GaN, COMSOL Simulation, p-n junction.
Texto completo:
951-970 PDFReferencias
Anpo M., Yamada Y. and Kubokawa Y., Photoluminescence Properties of MgO Powders with Coordinatively Unsaturated Surface Ions, J. Chem. Soc. vol. 84, no. 3, 1988.
Amano H., Kito M., Hiramatsu K., and Akasaki I., P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI), Japanese journal of applied physics, vol. 28, no. 12, 1989.
Amano H., Sawaki N., Akasaki I. and Toyoda Y., Metalorganic vapor pase epitaxial growth of a high quality GaN film using an AlN buffer layer, Appl. Phys. Lett. vol. 48, no. 5.
Amano H., Asahi T., Kito M. and Akasaki I., Stimulated emission in MOVPE-grown GaN film, Journal of Luminescence, vol. 48-49, no. part-P2, 1991.
Ebong A., Arthur S., Downey E., Stokes E. B., Cao X. A., LeBoeuf S., Sandvik P. M. and Walker D., Modeling and circuit simulation of GaN-Based light emitting diodes for optimum efficiency through uniform current spreading, Proc. Of SPIE, vol. 4776, 2002.
Everett S. E., Formation and characterization of amorphous gallium nitride, The Australian National University, 2004.
Ganchenkova M. G. and Neiminen R. M., Nitrogen Vacancies as Major Point Defects in Gallium Nitride, Physical Review Letters, vol. 96, no. 19, 2006.
García R., Thomas A. C. and Ponce F. A., Growth of free-standing highly luminescent undoped and Mg-doped GaN thick films with a columnar structure, Journal of Crystal Growth, vol. 310, no. 12, 2008.
Gastellóu E., Morales C., García R., García G., Hirata G. A., Herrera A. M., Galeazzi R., Rosendo E., Díaz T. and Tejeda E. M., P-type GaN powders obtained by nitridation of Ga-Mg liquid metallic solution, Journal of Alloys and Compounds, vol. 772, 2018.
Greco G., Iucolano F. and Roccaforte F., Ohmic contacts to Gallium Nitride materials, Applied Surface Science, 2016.
Hu Z., Nomoto K., Qi M., Li W., Zhu M., Gao X., Jena D., and Xing G., 1.1 kV Vertical GaN p-n Diodes With p-GaN Regrown by Molecular Beam Epitaxy, Electron Device Letters, vol. 38, no. 8, 2017.
Kim J. G., Park E. H., Kang D. and Park B. G., Extraction of recombination coefficients and internal quantum efficiency of GaN-based light emitting diodes considering effective volumen of active región, Optical Society of America, vol. 200, no. 2, 2014.
Koide N., Kato H., Sassa M., Yamasaki S., Manabe K., Hashimoto M., Amano H., Hiramatsu K. and Akasaki I., Doping of GaN with Si and properties of blue m/i/n/n+ GaN LED with Si-doped n+ layer by MOVPE, Journal of Crystal Growth, vol. 115, no. 1-4, 1991.
Lophitis N., Arvanitopoulos N., Perkins S. and Antoniou M., TCAD Device Modelling and Simulation of Wide Bandgap Power Semiconductors, IntechOpen, Chapter 2, 2018.
Nakamura S., Mukai T., Senoh M., Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes, Appl. Phys. Lett. vol. 64, no. 1687, 1993.
Nakamura S., Mukai T. and Senoh M., High-Power GaN P-N Junction Blue-Light-Emitting Diodes, Japanese Journal of Applied Physics, vol. 30, no. 13A, 1991.
Naruwaka Y., Ichikawa M., Sanga D., Sano M., and Mukai T., White light emitting diodes with super-high luminous efficacy, Journal of Physics, vol. 43, no. 35, 2010.
Naruwaka Y., Narita J., Sakamoto T., Yamada T., Narimatsu H., Sano M., and Mukai T., Recent progress of high efficiency White LEDs, phys. stat. sol. vol. 204, no. 6, 2007.
Niebelschütz M., Cimalla V., Ambacher O., Machleidt T., Ristic J. and Calleja E., Electrical performance of gallium nitride nanocolumns, Physica E. vol. 37, no. 1-2, 2006.
Nikiforov S. V., Kortov V. S., Kiryakov A. N. and Petrovykh K. A., Luminescence of ultrafine magnesium oxide ceramics with Deep traps, 5th International Congres son Energy Fluxes and Radiation Effects, Journal of Physics, vol. 830, 2016.
Pal S., Ingale A., Dixit V. K., Sharma T. K., Porwal S., Tiwari P. and Nath A. K., A comparative study on nanotextured high density Mg-doped and undoped GaN, Journal of applied physics, vol. 101, 2007.
Ravi L., Boopathi K., Panigrahi P. and Krishnan B., Growth of Gallium Nitride Nanowires on Sapphire and Silicon by Chemical Vapor Deposition for Water Splitting Applications, Applied Surface Science, 2018.
Reshchikov M. A. and Morkoc H., Luminescence properties of defects in GaN, Applied Physics Reviews, vol. 97, no. 6, 2005.
Saini D. K., Gallium nitride: Analysis of physical properties and performance in high-frequency power electronic circuits, Wright State University, 2015.
Seager C. H., Wright A. F., Yu J. and Götz W., Role of carbon in GaN, Journal of applied physics, vol. 92, no. 11, 2002.
Vaudo R. P., Goepfert I. D., and Moustakas T. D., Beyea D. M., Frey T. J. and Meehan K., Characteristics of light-emitting diodes base don GaN p-n junctions grown by plasma-assisted molecular beam epitaxy, Journal of Applied Physics, vol. 79, no. 5, 1995.
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx