ESTUDIO DE UN RECUBRIMIENTO DE NANOPARTÍCULAS DE SILICIO BASADO EN EL PROCESO DE CONVERSIÓN DESCENDENTE PARA EL INCREMENTO DE LA EFICIENCIA DE UNA CELDA SOLAR DE SILICIO POLICRISTALINO (STUDY OF A SILICON NANOPARTICLE COATING BASED ON THE DOWNSHIFTING PROCESS TO INCREASE THE EFFICIENCY OF A POLYCRYSTALLINE SILICON SOLAR CELL)
Resumen
En el presente trabajo de investigación se expone el estudio de un recubrimiento de nanopartículas de silicio con el cual se busca mejorar la eficiencia de celdas solares de silicio policristalino mediante el proceso de conversión descendente (downshifting) para aprovechar energía desperdiciada en forma de calor.
Como producto de la síntesis, se obtuvo un recubrimiento para celdas solares de NPs-Si con un tamaño de 2 nm. Adicionalmente, se reportan la transmitancia de las nanopartículas de silicio en un rango desde 300 nm hasta 800 nm y su ancho de banda prohibida estimada en 2.88 eV. Finalmente, la caracterización eléctrica de celdas solares policristalinas mejoradas a través del recubrimiento de NPs-Si es analizado.
Como resultado principal, una celda solar comercial y cubierta con las nanopartículas mejoró su eficiencia total de 6.08% a un 6.73% lo que arroja un incremento del 10.69% en la eficiencia total de la celda, demostrando la capacidad de recubrimiento de conversión descendente basado en nanopartículas de silicio.
Palabras clave: Celdas solares, nanopartículas, silicio.
Abstract
In this research work, the study of a coating of silicon nanoparticles is exposed with which it is sought to improve the efficiency of polycrystalline silicon solar cells through the process of downward conversion (downshifting) to take advantage of wasted energy in the form of heat.
As a product of the synthesis, a coating for NPs-Si solar cells with a size of 2 nm was obtained. Additionally, the transmittance of silicon nanoparticles in a range from 300nm to 800nm and their bandwidth estimated at 2.88eV are reported. Finally, the electrical characterization of polycrystalline solar cells improved through NPs-Si coating is analyzed.
As a main result, a commercial solar cell covered with the nanoparticles improved its overall efficiency from 6.08% to 6.73% which yields a 10.69% increase, demonstrating the ability of down-conversion coating based on silicon nanoparticles.
Keywords: Nanoparticles, silicon, Solar cells.
Texto completo:
576-590 PDFReferencias
Aliofkhazraei, Mahmood, (2015). Handbook of Nanoparticles. Handbook of Nanoparticles. https://doi.org/10.1007/978-3-319-15338-4.
Antoniadis, Homer, (2009). Silicon Ink High Efficiency Solar Cells. 34th IEEE Photovoltaic Specialists Conference. https://ieeexplore.ieee.org/document/5411597/footnotes#footnotes.
Chowdhury, Farsad I., Aaesha Alnuaimi, Kazi Islam, and Ammar Nayfeh, (2014). Efficiency Enhancement in Thin-Film c-Si HIT Solar Cells Using Luminescent 2.85 Nm Silicon Nanoparticles. IEEE 40th Photovoltaic Specialist Conference, 2209–13. https://doi.org/10.1109/PVSC.2014.6925364.
Friedman, Daniel J., John F. Geisz, and Myles A. Steiner, (2013). Analysis of Multijunction Solar Cell Current-Voltage Characteristics in the Presence of Luminescent Coupling. IEEE Journal of Photovoltaics 3 (4), 1429–36. https://doi.org/10.1109/JPHOTOV.2013.2275189.
Higuera, Hiram, (2019). Tesis titulada: Síntesis De Nanopartículas de Silicio Para La Fabricación De Recubrimientos En Celdas Solares. Universidad de Sonora.
Hong-Chen Hao, Wei Shi, Jia-Rong Chen, Ming Lu, (2014). Mass Production of Si Quantum Dots for Commercial C-Si Solar Cell Efficiency Improvement. Materials Letters 133, 80–82.
Hoppe, Harald, and Niyazi Serdar Sariciftci, (2004). Organic Solar Cells: An Overview. Journal of Materials Research 19 (7), 1924–45. https://doi.org/10.1557/JMR.2004.0252.
Instruments, Edinburgh, (2019). ¿What Is a Spectrometer?. https://www.edinst.com/blog/what-is-a-spectrometer/.
Lopez Delgado, Rosendo, H. J. Higuera Valenzuela, A. Zazueta Raynaud, A. Ramos Carrazco, J. E. Pelayo, D. Berman Mendoza, M. E. Álvarez Ramos, and Arturo Ayon, (2018). Solar Cell Efficiency Improvement Employing Down-Shifting Silicon Quantum Dots. Microsystem Technologies 24 (1), 495–502. https://doi.org/10.1007/s00542-017-3405-x.
Luo, Z., R. Y. Hong, H. D. Xie, and W. G. Feng, (2012). One-Step Synthesis of Functional Silica Nanoparticles for Reinforcement of Polyurethane Coatings. Powder Technology 218, 23–30. https://doi.org/10.1016/j.powtec.2011.11.023.
Paar, Anton, (2017). The Principles of Dynamic Light Scattering. https://wiki.anton-paar.com/en/the-principles-of-dynamic-light-scattering/.
Parlak, Elif Alturk, Tülay AslTumay, Nesrin Tore, Şerife Saroǧlan, Pelin Kavak, and Figen Türksoy, (2013). Efficiency Improvement of PCDTBT Solar Cells with Silver Nanoparticles. Solar Energy Materials and Solar Cells 110: 58–62. https://doi.org/10.1016/j.solmat.2012.12.002.
Pi, Xiaodong, Qing Li, Dongsheng Li, and Deren Yang, (2011). Spin-Coating Silicon-Quantum-Dot Ink to Improve Solar Cell Efficiency. Solar Energy Materials and Solar Cells 95 (10), 2941–45. https://doi.org/10.1016/j.solmat.2011.06.010.
Sugimoto, Tadao, (2001). Characterization of Products. In Monodispersed Particles, 1st ed., 482–519. Elsevier Science B.V.
Sun, Xuping, Xiue Jiang, Shaojun Dong, and Erkang Wang, (2003). One-Step Synthesis and Size Control of Dendrimer-Protected Gold Nanoparticles: A Heat-Treatment-Based Strategy. Macromolecular Rapid Communications 24 (17), pp. 1024–28. https://doi.org/10.1002/marc.200300093.
Techno, Sun, (2009). ¿Qué Es El Factor de Forma o Fill Factor?, Techno Sun Blog. http://blog.technosun.com/que-es-el-factor-de-forma-o-fill-factor/.
Vourvoulias, Aris, (2020). How Efficient Are Solar Panels?, Green Match Blog. https://www.greenmatch.co.uk/blog/2014/11/how-efficient-are-solar-panels.
Worsfold, Paul J., and Elias A.G. Zagatto, (2005). Spectrophotometry | Overview. In Encyclopedia of Analytical Science, edited by Manuel Worsfold, Pau; Townshend, Alan; Poole, Colin; Miró, 318–21. Elsevier Science B.V.
Wright, Daniel N., Erik S. Marstein, and Arve Holt, (2005). Double Layer Anti-Reflective Coatings for Silicon Solar Cells. Conference Record of the IEEE Photovoltaic Specialists Conference, no. 2027, pp. 1237–40. https://doi.org/10.1109/pvsc.2005.1488363.
Yadav, Amar, (2012). Re: What Is Quantum Confinement Effect? ResearchGate. https://www.researchgate.net/post/What_is_Quantum_confinement_effect.
Ye, Gaoyang, (2018). Tesis titulada Thermodynamic and Structural Investigations on the Interactions between Actinides and Phosphonate-Based Ligands. Université Paris-Saclay. https://www.researchgate.net/publication/334191348_Thermodynamic_and_structural_investigations_on_the_interactions_between_actinides_and_phosphonate-based_ligands.
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx