PROPUESTA PARA IMPLEMENTAR UN SENSOR OPTOELECTRÓNICO BASADO EN UN FILTRO ÓPTICO SENSIBLE A LA TEMPERATURA E ÍNDICE DE REFRACCIÓN (PROPOSAL TO IMPLEMENT AN OPTOECLECTRONIC SENSOR BASED ON AN OPTICAL FILTER SENSITIVE TO TEMPERATURA AND REFRACTIVE INDEX)

Miguel Angel López Durán, Ana Dinora Guzmán Chávez, Everardo Vargas Rodríguez, Martín Cano Contreras Cano Contreras, Leonardo Martínez Jiménez

Resumen


Resumen
En este trabajo se presenta una propuesta para implementar un sensor optoelectrónico basado en un filtro óptico sensible a la temperatura e índice de refracción. Aquí, la respuesta del filtro espectral (un patrón de franjas) es analíticamente modelada y se muestra que la posición de las franjas y su amplitud pico a pico se ven afectados por la temperatura y el índice de refracción externo. Además, se muestra que evaluando la intensidad acumulada relativa de ciertos segmentos del espectro, es posible establecer relaciones casi lineales con ambas variables físicas. Basándonos en estos principios, se presenta la propuesta de un sensor optoelectrónico para medir el índice de refracción de 1–2.5 UIR y la temperatura de 25–56 oC usando un láser sintonizable, un detector de infrarrojo, el filtro espectral fabricado y una etapa electrónica de acondicionamiento y procesamiento de señales. Finalmente, se presenta el modelo matemático del sensor optoelectrónico propuesto.
Palabras Clave: Índice de refracción, interferómetro, sensor no dispersivo, sensor optoelectrónico, temperatura.

Abstract
In this work a proposal to implement an optoelectronic sensor based on an optical filter which is sensitive to temperature and refractive index is presented. Here, the spectral filter response (a fringe pattern) is analytically modeled and it is shown that the position of the fringes and their peak-to-peak amplitude are affected by temperature and the external refractive index. Besides, it is shown that by evaluating the relative accumulated intensity of certain portions of the spectrum, it is possible to establish cuasi linear relationships with both physical variables. Based on these principles, an optoelectronic sensor to measure refractive index from 1–2.5 UIR and temperature from 25–56 oC by using a tunable laser, an infrared photodetector, the fabricated spectral filter and a stage of electronic conditioning and signals processing is proposed. Finally the mathematical model of the proposed optoelectronic sensor is provided.
Keywords: Interferometer, non-dispersive sensor, optoelectronic sensor, refractive index, temperature.

Texto completo:

519-536 PDF

Referencias


Cano Contreras, M., Guzman Chavez, A. D., Vargas Rodríguez, E., Gallegos Arellano, E., Jauregui Vazquez, D., Mata Chavez, R. I., Torres Cisneros, M., Rojas Laguna, R. Refractive index sensing setup based on a taper intrinsic micro Fabry-Perot interferometer. Journal of the European Optical Society- Rapid publications, vol. 10, 15039-5, 2015.

Jauregui Vazquez, D., Estudillo Ayala, J. M., Rojas Laguna, R., Vargas Rodriguez, E., Sierra Hernandez, J. M., Hernandez Garcia, J. C., & Mata Chavez, R. I. An all fiber intrinsic Fabry-Perot interferometer based on an air-microcavity. Sensors, No. 5, 6355–6364, 2013.

Jorge, P. A. S., Silva, S. O., Gouveia, C., Tafulo, P., Coelho, L., Caldas, P., Viegas, D., Rego, G., Baptista, J. M., Santos, J.L., et al. Fiber optic-based refractive index sensing at inesc porto. Sensors, No. 6, 837189-, 2012.

Liang, W., Huang, Y., Xu, Y., Lee, R. K., & Yariv, A. Highly sensitive fiber Bragg grating refractive index sensors. Applied Physics Letters, No. 15, 151122, 2005.

Lim, A., Ji, W. B., & Tjin, S. C. Improved refractive index sensitivity utilizing long-period gratings with periodic corrugations on cladding. Journal of Sensor. 48347-5, 2012.

Liu, S., Zhang, H., Li, L., Xiong, L., & Shum, P.P. Liquid core fiber interferometer for simultaneous measurement of refractive index and temperature. IEEE Photonics Technology Letters. No. 2, 189–192, 2018.

Mehrvar, M., Bis, C., Scharer, J. M., Young, M. M., & Luong, J. H. Fiber-optic biosensors-trends and advances. Analytical Sciences, Co.7, 677-692, 2000.

Patrick, H. J., Williams, G. M., Kersey, A. D., Predazzani, J. R., & Vengsarkar, A. M. Hybrid fiber Bragg gratting/long priod fiber grating sensors for strain/temperature discrimination. Sensors, no. 9, 1223-1225, 1997.

Roriz, P., Silva, S., Frazao, O., & Novais, S. Optical Fiber Temperature Sensors and Their Biomedical Applications. Sensors, no. 7, 2020.

Tan, X.L., Geng, Y.F., Li, X.J., Deng, Y.L., Yin, Z., & Gao, R. UV-Curable Polymer Microhemisphere-Based Fiber-Optic Fabry–Perot Interferometer for Simultaneous Measurement of Refractive Index and Temperature. IEEE Photonics Journla, no. 4, 1–8, 2014.

Vargas Rodríguez, E., Guzman Chávez, A. D., Baeza Serrato, R., & Garcia Ramirez, A. Optical Fiber FP Sensor for Simultaneous Measurement of Refractive Index and Temperature based on the Empirical Mode Decomposition Algorithm. Sensors, no. 664, 1-14, 2020.

Vargas Rodriguez, E., Guzman Chavez, A. D., Cano Contreras, M., Gallegos Arellano, E., Jauregui Vazquez, D., Hernández García, J. C., Estudillo Ayala, J. M., & Rojas Laguna, R. Analytical Modelling of a Refractive Index Sensor Based on an Intrinsic Micro Fabry-Perot Interferometer. Sensors, no. 15, 26128-26142, 2015.

Vargas Rodriguez, E., Guzman Chavez, A. D., & Garcia Ramirez, M. A. Tunable Optical Filter Based on Two Thermal Sensitive Layers. IEEE Photonics Technol. Lett. No. 20, 1776–1779, 2018.

Xu, L., Li, Y., & Li, B. Nonadiabatic fiber taper-based Mach-Zehnder interferometer for refractive index sensing. Applied Physics Letters, 153510, 2012.

Yadav, T. K., Narayanaswamy, R., Abu Bakar, M. H., Kamil, Y. M., & Mahdi, M. A. Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing. Optics Express. No. 19, 22802–22807, 2014.

Yang, R., Yu, Y.-S., Xue, Y., Chen, C., Chen, Q.-D., & Sun, H.-B. Single S-tapered fiber Mach-Zehnder interferometers. Optics Letters, no. 23, 4482–4484, 2011.

Zhan, Y., Cai, H., Qu, R., Xiang, Sh., Fang, Z., & Wang, X. Fiber Bragg grating temperature sensor for multiplexed measurement with high resolution. Optical Engineering, no. 10, 2004.

Zhang, A. P., Yan, G., Gao, S., He, S., Kim, B., Im., J., & Chung, Y. Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings. Applied Physics Letters, no. 22, 221109, 2011.

Zhang, X., Yu, Y., Zhu, C., Chen, C., Yang, R., Xue, Y., Chen, Q., & Sun, H. Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement. IEEE Photonics Technology Letters, no.1, 7–10, 2014.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas