ANTENA REPETIDORA CON PLANO DE TIERRA AMC PARA APLICACIONES EN WI-FI HALLOW (REPEATING ANTENNA WITH AMC GROUND PLANE FOR WI-FI HALLOW APPLICATIONS)

Sergio Buenrostro Rocha, Roberto Herrera Charles, Andrés Calvillo Téllez

Resumen


Resumen
En este artículo se propone el diseño teórico de una antena basada en metamaterial de alta ganancia, alta eficiencia y de bajo perfil. La antena opera en el rango de frecuencias UHF de 854 MHz - 954 MHz y puede ser implementada como un repetidor para el estándar de comunicación inalámbrica Wi-Fi HaLow (IEEE 802.11 ah), la cual opera en la banda libre de 900 MHz. La ganancia de la antena va desde los 5 dBi hasta los 9 dBi, con por lo menos 94 % de eficiencia de radiación y un 11 % de ancho de banda fraccional. El tamaño de esta estructura de bajo perfil es de 308 mm x 308 mm x 20.29 mm (0.92 λ0 x 0.92 λ0 x 0.06 λ0). La estructura consta de una antena dipolo acoplada a 50 Ω que es colocada sobre un plano de tierra de Conductor Magnético Artificial (AMC) con un arreglo de 4 x 4 celdas unitarias cuadradas. Esta antena también puede utilizarse como complemento al Internet de las cosas (IoT), cámaras de video y a las redes inalámbricas de sensores (WSN). Se presenta la metodología de diseño, y se reportan los resultados del análisis electromagnético.
Palabras Clave: Antena; Conductor Magnético Artificial (AMC), longitud de onda en el espacio libre (λ0), metamaterial, Wi-Fi HaLow.

Abstract
A metamaterial-based antenna with high-gain, high-efficiency, low-profile and improved bandwidth is theorically proposed and analyzed in this paper. The antenna operates in the 854 MHz - 954 MHz UHF frequency range and can be implemented as a repeater for the HaLow Wi-Fi wireless communication standard (IEEE 802.11ah), which operates in the 900 MHz free band. Antenna gain ranges from 5 dBi to 9 dBi, with at least 94% radiation efficiency and 11 % fractional bandwidth. The size of this low-profile structure is 308mm x 308mm x 20.29mm (0.92 λ0 x 0.92 λ0 x 0.06 λ0). The structure consists of a 50 Ω dipole antenna which is placed over an Artificial Magnetic Conductor (AMC) ground plane with an array of 4 x 4 squared shaped unit cells. This antenna can also be used as a complement to the Internet of Things (IoT), video cameras and Wireless Sensor Networks (WSN). The design methodology of the antenna is presented, and the results of the electromagnetic analysis are reported.
Keywords: Antena, Artificial Magnetic Conductor (AMC), free space wavelength (λ0), metamaterial, Wi-Fi HaLow.

Texto completo:

275-287 PDF

Referencias


Bankov, Dmitry & Khorov, Evgeny & Kureev, Aleksey & Lyakhov, A. (2016). Improving Efficiency of Heterogeneous Wi-Fi Networks with Energy-Limited Devices. 9870. 181-192. 10.1007/978-3-319-46301-8_15.

Bellier P., P. Laurent, S. Stoukatch, F. Dupont, L. Joris, and M. Kraft, Autonomous micro-platform for multisensors with an advanced power management unit (PMU), Journal of Sensors and Sensor Systems, vol. 7, no. 1. Journal of Sensors and Sensor Systems, pp. 299–308, 2018.

Dewan, R, Rahim, MKA, Hamid, MR, Artificial magnetic conductor for various antenna applications: An overview. Int J RF Microw Comput Aided Eng. https://doi.org/10.1002/mmce.21105, 2017.

Khorov, Evgeny & Lyakhov, A. & Krotov, Alexander & Guschin, Andrey. (2015). A survey on IEEE 802.11 ah: An Enabling Networking Technology for Smart Cities. Computer Communications. 58. 53-69. 10.1016/j.comcom.2014.08.008.

Kumar, Rakesh & Chaudhari, Shashikanth & Jain, Manoj. (2017). LD-IoT: Long Distance Outdoor Networking for 802.11ah based IoT.

Raza, Shahzad. Characterization of the reflection and dispersion properties of Mushroom'-Related Structures and Their Application to Antennas. University of Toronto, Canada, 2012.

Sievenpiper D., High-impedance electromagnetic surfaces, Ph.D. dissertation, Dept. Elect. Eng. Univ. California at Los Angeles, Los Angeles, CA, 1999.

Sievenpiper, Dan, Lijun Zhang, Romulo FJ Broas, Nicholas G. Alexopolous, and Eli Yablonovitch. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theory and techniques 47, no. 11, pp. 2059-2074, 1999.

Yang F. and Y. Rahmat-Samii, Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications. IEEE Trans. Antennas Propag., vol. 51, no. 10, pp. 2936-2946, October 2003.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas