CONSTRUCCIÓN DE UN PROTOTIPO DE UN SISTEMA DE RIEGO Y VENTILACIÓN DE UN INVERNADERO BAJO EL CONCEPTO DE IOT (CONSTRUCTION OF A PROTOTYPE OF AN IRRIGATION AND VENTILATION SYSTEM OF A GREENHOUSE UNDER THE CONCEPT OF IOT)

José Ignacio Vega Luna, Francisco Javier Sánchez Rangel, Gerardo Salgado Guzmán, Mario Alberto Lagos Acosta, Víctor Noé Tapia Vargas, José Francisco Cosme Aceves

Resumen


Resumen
El objetivo de la presente investigación fue construir el prototipo de un sistema de riego y ventilación de un invernadero usando Internet de las Cosas (IoT). El sistema registra periódicamente los valores de humedad y temperatura en la plataforma Dashboard wia, los cuales se pueden visualizar desde la Internet por medio de una interfaz de usuario. Se implantó usando una tarjeta Huzzah32-ESP32, con un sensor de humedad del suelo y un sensor de temperatura. Si el valor de la humedad es el mínimo configurado se activan cuatro aspersores de agua y si el valor de la temperatura alcanza el umbral configurado se activa un ventilador. En ambos casos se envía un mensaje de WhatsApp a un teléfono móvil usando la plataforma de servicios Twilio. Los resultados de las pruebas mostraron que los rangos de temperatura y humedad reportadas son ±0.4 °C y ±1.0 % RH, respectivamente, comparados con dispositivos de calibración de temperatura y humedad del invernadero. El alcance de la comunicación WiFi es de 45 metros.
Palabras Clave: Humedad, Huzzah32-ESP32, IoT, Twilio, WhatsApp.

Abstract
The objective of the present investigation was to build the prototype of a greenhouse irrigation and ventilation system using the Internet of Things (IoT). The system periodically records the humidity and temperature values on the Dashboard wia platform, which can be viewed from the Internet through a user interface. It was implanted using a Huzzah32-ESP32 card, with a soil moisture sensor and a temperature sensor. If the humidity value is the configured minimum, four water sprinklers are activated and if the temperature value reaches the configured threshold, a fan is activated. In both cases, a WhatsApp message is sent to a mobile phone using the Twilio service platform. The test results showed that the reported temperature and humidity ranges are ± 0.4 ° C and ± 1.0% RH, respectively, compared to greenhouse temperature and humidity calibration devices. The range of WiFi communication is 45 meters.
Keywords: Humidity, Huzzah32-ESP32, IoT, Twilio, WhatsApp.

Texto completo:

1243-1257 PDF

Referencias


Ahmed, N., De, D. & Hussain, I. Internet of Things (IoT) for Smart Precision Agriculture and Farming in Rural Areas. IEEE Internet of Things Journal, 5(6), 4890-4899, 2018.

Ayaz, M., Ammad-Uddin, M. & Sharif, Z. Internet-of-Things (IoT)-Based Smart Agriculture: Toward Making the Fields Talk. IEEE Access, Vol. 7, 129551-129583, 2019.

Brunelli, D, Albanese, A. & d'Acunto, D. Energy Neutral Machine Learning Based IoT Device for Pest Detection in Precision Agriculture. IEEE Internet of Things Magazine, 2(4), 10-13, 2019.

Chen, W. L., Lin, Y. B. & Lin, Y. W. AgriTalk: IoT for Precision Soil Farming of Turmeric Cultivation. IEEE Internet of Things Journal, 6(3), 5209-5223, 2019.

Chrouta, J., Chakchouk, W. & Zaafouri, A. Modeling and Control of an Irrigation Station Process Using Heterogeneous Cuckoo Search Algorithm and Fuzzy Logic Controller. IEEE Transactions on Industry Applications, 55(1), 976-990, 2019.

Elijah, O., Rahman, T. A. & Orikumhi, I. An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges. IEEE Internet of Things Journal, 5(5), 3758-3773, 2018.

Farooq, M. S., Riaz, S. & Abid, A. A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. IEEE Access, Vol. 7, 156237-156271, 2019.

Hussain, A., Choi, I. L. & Im, Y. H. Optimal Operation of Greenhouses in Microgrids Perspective. IEEE Transactions on Smart Grid, 10(3), 3474-3485, 2019.

Jiang, X., Zhang, H. & Barsallo, E. Hybrid Low-Power Wide-Area Mesh Network for IoT Applications. IEEE Internet of Things Journal, (Early Access), 2020.

Kour, V. P. & Arora, S. Recent Developments of the Internet of Things in Agriculture: A Survey. IEEE Access, Vol. 8, 129924-129957, 2020.

Misra, N. N., Dixit, Y. & Al-Mallahi, A. IoT, big data and artificial intelligence in agriculture and food industry. IEEE Internet of Things Journal (Early Access), 2020.

Muñoz, M., Guzmán, J. L. & Sánchez, J. A. A New IoT-based Platform for Greenhouse Crop Production. Internet of Things Journal, (Early Access), 2020.

Saad, A., El-Hassan-Benyamina, A. & Gamatié, A. Water Management in Agriculture: A Survey on Current Challenges and Technological Solutions. IEEE Access, Vol. 8, 38082-38097, 2020.

Subahi, A. F. & Bouazza, K. E. An Intelligent IoT-Based System Design for Controlling and Monitoring Greenhouse Temperature. IEEE Access, Vol. 8, 125488-125500, 2020.

Sun, Z., Chen, J. & Han, Y. An Optimized Water Distribution Model of Irrigation District Based on the Genetic Backtracking Search Algorithm. IEEE Access, Vol. 7, 145692-145704, 2019.

Taylor, G. A., Beltrán, H. & Ruiz, F. pH Measurement IoT System for Precision Agriculture Applications. IEEE Latin America Transactions, 17(5), 823-832, 2019.

Togneri, R., Kamienski, C. & Dantas, R. Advancing IoT-Based Smart Irrigation. IEEE Internet of Things Magazine, 2(4), pp. 20-25, 2019.

Tyagi, S. K. S., Mukherjee, A. & Pokhrel, S. R. An Intelligent and Optimal Resource Allocation Approach in Sensor Networks for Smart Agri-IoT. IEEE Sensors Journal (Early Access), 2020.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas