REVISIÓN DE LA APLICACIÓN DE HARDWARE IN THE LOOP EN SISTEMAS FOTOVOLTAICOS (REVIEW OF THE HARDWARE IN THE LOOP APPLICATION IN PHOTOVOLTAIC SYSTEMS)

Víctor Manuel Sámano Ortega, Juan José Martínez Nolasco, Alonso Alejandro Jiménez Garibay, José Enrique Botello Álvarez, Jessica Alejandra Araujo Rodríguez

Resumen


Resumen
En los últimos años los sistemas de distribución eléctricos se han ido transformando. Las micro-redes se presentan como una alternativa capaz de cubrir las necesidades que esta transformación implica, convirtiéndolas en el tema de investigaciones recientes. Uno de los aspectos tratados en estas investigaciones refiere a los medios de producción de energía limpia y en este punto la energía fotovoltaica destaca. La infraestructura y recursos necesarios para probar sistemas fotovoltaicos han motivado a la búsqueda de alternativas para llevar a cabo este proceso. Una de las soluciones radica en la implementación de simulaciones Hardware in the Loop. En este trabajo se presenta una revisión de investigaciones referentes a la aplicación de técnicas Hardware in the Loop en sistemas fotovoltaicos. Catorce investigaciones fueron sistematizadas recabando lo referente a cuatro aspectos: el tipo de hardware empleado, las ventajas y desventajas de la propuesta, la finalidad con la que fue llevada a cabo la investigación y el tipo de simulación HIL llevada a cabo.
Palabras Clave: Controller Hardware in the Loop, Hardware in the Loop, Power Hardware in the Loop, Sistema fotovoltaico.

Abstract
In the last years, electrical distribution systems have transformed. Micro-grids are presented as a viable alternative to meet the needs that this transformation implies, converting them in the topic of interest in recent investigations. One of the aspects treated in these investigations refers to the means of clean energy production and, in this point, photovoltaic energy stands out. Infrastructure and resources needed for photovoltaic systems testing have motivated the research of alternatives to carry out this process. One of the solutions lies on Hardware in the Loop simulations applied in photovoltaic systems. Fourteen investigations collected systematically what refers to four aspects: the kind of hardware employed, the advantages and disadvantages of the proposal, the finality of the investigation and, finally, the kind of HIL simulation that was carried out.
Keywords: Controller Hardware in the Loop, Hardware in the Loop, Photovoltaic system, Power Hardware in the Loop.

Texto completo:

585-594 PDF

Referencias


Ayop, R., & Tan, C. W. (2017). A comprehensive review on photovoltaic emulator. Renewable and Sustainable Energy Reviews, 80, 430-452.

Datta, U., Kalam, A., & Shi, J. (2018). Hybrid PV–wind renewable energy sources for microgrid application: an overview. Hybrid-Renewable Energy Systems in Microgrids, 1–22. doi:10.1016/b978-0-08-102493-5.00001-7

Ebe, F., Idlbi, B., Stakic, D. E., Chen, S., Kondzialka, C., Casel, M., ... & Strasser, T. I. (2018). Comparison of Power Hardware-in-the-Loop Approaches for the Testing of Smart Grid Controls. Energies, 11(12), 3381.

Estrada, L., Vázquez, N., Vaquero, J., de Castro, Á., & Arau, J. (2020). Real-Time Hardware in the Loop Simulation Methodology for Power Converters Using LabVIEW FPGA. Energies, 13(2), 373.

Fakham, H., Qoria, T., Legry, M., Ducarme, O., & Colas, F. (2019, October). Development of a power hardware in the loop simulation of an islanded microgrid. In IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society (Vol. 1, pp. 6438-6443). IEEE.

Ghanbari, N., & Bhattacharya, S. (2019). Hardware-In-The-Loop Implementation of a Grid Connected PV System. 2019 IEEE Industry Applications Society Annual Meeting. doi:10.1109/ias.2019.8912363

Gutierrez, A., Bressan, M., Jimenez, J. F., & Alonso, C. (2017). Development of real-time supervision HIL emulator of shaded PV systems. 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA). doi:10.1109/icrera.2017.8191110

Hirsch, A., Parag, Y., & Guerrero, J. (2018). Microgrids: A review of technologies, key drivers, and outstanding issues. Renewable and Sustainable Energy Reviews, 90, 402-411.Chandrinos, K. V., & Trahanias, P. E. (1998). Web-based Information Systems ERCIM Workshop Proceedings: http://www.ercim.org /publication/ws-proceedings/DELOS6/.

Huo, Y., Gruosso, G., & Piegari, L. (2017). Power hardware in the loop simulator of photovoltaic plant for smart grid interation analysis. 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). doi:10.1109/eeeic.2017.7977629

Iman-Eini, H., & Tennakoon, S. B. (2019). Investigation of a cascaded H-bridge photovoltaic inverter under non-uniform insolation conditions by hardware-in-the-loop test. International Journal of Electrical Power & Energy Systems, 105, 330–340. doi:10.1016/j.ijepes.2018.08.017

Kumar, V. N., Naidu, B. R., & Panda, G. (2017). Hardware-in-loop validation of a dynamic control employed for a hybrid DC microgrid incorporating high gain DC-DC power stages. 2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). doi:10.1109/appeec.2017.8308930

Mai, X. H., Kwak, S.-K., Jung, J.-H., & Kim, K. A. (2017). Comprehensive Electric-Thermal Photovoltaic Modeling for Power-Hardware-in-the-Loop Simulation (PHILS) Applications. IEEE Transactions on Industrial Electronics, 64(8), 6255–6264. doi:10.1109/tie.2017.2682039

Moussa, I., Bouallegue, A., & Khedher, A. (2017). Development of a low cost PV simulator based on FPGA technology. 2017 International Conference on Green Energy Conversion Systems (GECS). doi:10.1109/gecs.2017.8066243

Palahalli, H., Huo, Y., & Gruosso, G. (2018). Real Time Simulation of Photovoltaic System using FPGA. 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). doi:10.1109/speedam.2018.8445288

Prabakar, K., Shirazi, M., Singh, A., & Chakraborty, S. (2017). Advanced photovoltaic inverter control development and validation in a controller-hardware-in-the-loop test bed. 2017 IEEE Energy Conversion Congress and Exposition (ECCE). doi:10.1109/ecce.2017.8095994

Raju P, E. S. N., & Jain, T. (2019). Distributed energy resources and control. Distributed Energy Resources in Microgrids, 33–56. doi:10.1016/b978-0-12-817774-7.00002-8

Ram, J. P., Manghani, H., Pillai, D. S., Babu, T. S., Miyatake, M., & Rajasekar, N. (2018). Analysis on solar PV emulators: A review. Renewable and Sustainable Energy Reviews, 81, 149-160.

Ram, J. P., Pillai, D. S., Ghias, A. M., & Rajasekar, N. (2020). Performance enhancement of solar PV systems applying P&O assisted Flower Pollination Algorithm (FPA). Solar Energy, 199, 214-229.

Ravinder, K., & Bansal, H. O. (2019). Investigations on shunt active power filter in a PV-wind-FC based hybrid renewable energy system to improve power quality using hardware-in-the-loop testing platform. Electric Power Systems Research, 177, 105957. doi:10.1016/j.epsr.2019.105957

Singh, S. V., & Shubhanga, K. N. (2017). Software-in-the-loop based MPPT enabled realtime solar photovoltaics simulator in FPGA platform for academic appreciation. 2017 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES). doi:10.1109/spices.2017.8091316

Stala, R., Penczek, A., Mondzik, A., & Stawiarski, Ł. (2017). A photovoltaic source I/U model suitable for hardware in the loop application. Archives of Electrical Engineering, 66(4).

Tiong, M. C., Daniyal, H., Sulaiman, M. H., Bakar, M. S., & Ab Ghani, S. (2019). A Real-time Simulation Platform for Maximum Power Point Tracking Algorithm Study in Solar Photovoltaic System. Applications of Modelling and Simulation, 3(2), 111-118.

Vijay, A. S., Doolla, S., & Chandorkar, M. C. (2017). Real-Time Testing Approaches for Microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 5(3), 1356–1376. doi:10.1109/jestpe.2017.2695486






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas