DISEÑO E IMPLEMENTACIÓN DE UN CONTROLADOR EMBEBIDO PARA UN SISTEMA FOTOVOLTAICO (DESIGN AND IMPLEMENTATION OF AN EMBEDDED CONTROLLER FOR A PHOTOVOLTAIC SYSTEM)

Juan José Martínez Nolasco, Stefanny Lizet Rangel Pichardo, Josué Aguilar Coronilla, Martín Galindo Jaramillo, Elías José Juan Rodríguez Segura

Resumen


Resumen
En este trabajo se presenta el desarrollo un controlador embebido para un sistema fotovoltaico. El sistema fotovoltaico consta de un panel solar de 240 W, un convertidor CD-CD elevador y un convertidor CD-CA. El diseño e implementación del controlador embebido se realizó sobre la plataforma de desarrollo NI myRIO-1900. Este sistema de control consta de dos etapas, la primera etapa es el algoritmo de control perturbar y observar para el seguimiento del punto de máxima potencia, mientras que la segunda etapa se encarga del monitoreo de la red eléctrica principal de corriente alterna y la sincronización de la salida del convertidor CD-CA con la señal monitoreada, para esta acción se utilizó la técnica de Modulación de Ancho de Pulso Sinusoidal (SPWM por sus siglas en ingles). Para comprobar el funcionamiento del controlador embebido se utilizó un prototipo experimental del sistema fotovoltaico, el cual extrae la máxima potencia del panel fotovoltaico y genera una señal de corriente eléctrica igual a la suministrada por CFE.
Palabras Clave: Control Embebido, Convertidor Electrónico de Potencia, LabVIEW, Panel Fotovoltaico, Prototipo Experimental.

Abstract
The design necessary to develop a control system for a DC-AC converter was realized in this project. The control part was embedded in a NI myRIO-1900 card. From Direct Current (DC) energy produced by the sunlight incidence on a Photovoltaic Panel (PVP) of 240 W, Alternating Current (AC) like the one CFE provides of 60 Hz electrical energy is produced. Connecting a DC-DC Boost converter and a DC-AC inverter to the PVP this was possible. A control integrated the Perturb and Observe (P&O) technique in the Maximum Power Point Tracker (MPPT) embedded in the system. In the control the Sinusoidal Pulse Width Modulation technique (SPWM) was used to synchronize with the CFE signal. Electricity like the one provided by CFE was produced in this project.
Keywords: Embedded Control, Experimental Prototype, LabVIEW, Photovoltaic Panel, Power Electronic Converter.

Texto completo:

387-400 PDF

Referencias


Attanasio, R., Gennaro, F., & Scuderi, G. (2013, October). A grid tie micro inverter with reactive power control capability. In AEIT Annual Conference, 2013 (pp. 1-6). IEEE.

Bae, S., & Kwasinski, A. (2012). Dynamic modeling and operation strategy for a microgrid with wind and photovoltaic resources. IEEE Transactions on smart grid, 3(4), 1867-1876.

Dizqah, A. M., Maheri, A., Busawon, K., & Kamjoo, A. (2015). A multivariable optimal energy management strategy for standalone dc microgrids. IEEE transactions on power systems, 30(5), 2278-2287.

Hasanien, H. M. (2016). An adaptive control strategy for low voltage ride through capability enhancement of grid-connected photovoltaic power plants. IEEE Transactions on Power Systems, 31(4), 3230-3237.

Jin, C., Wang, P., Xiao, J., Tang, Y., & Choo, F. H. (2014). Implementation of hierarchical control in DC microgrids. IEEE transactions on industrial electronics, 61(8), 4032-4042.

Lin, F., Li, K., & Liu, Y. (2011, June). A design and implementation of edge controller for SPWM waves. In 2011 IEEE International Conference on Information and Automation (pp. 764-767). IEEE.

Morstyn, T., Hredzak, B., Demetriades, G. D., & Agelidis, V. G. (2016). Unified distributed control for DC microgrid operating modes. IEEE Transactions on Power Systems, 31(1), 802-812.

Selmi, T., Abdul, M., Devis, L., Davis, A. (2014). P&O MPPT Implementation using MATLAB/Simulink. Ninth International Conference on Ecological Vehicles and Renewable Energies (EVER), 5(14), 978-981.

Shadmand, M. B., & Balog, R. S. (2014). Multi-objective optimization and design of photovoltaic-wind hybrid system for community smart DC microgrid. IEEE Transactions on Smart Grid, 5(5), 2635-2643.

Sun, K., Zhang, L., Xing, Y., & Guerrero, J. M. (2011a). A distributed control strategy based on DC bus signaling for modular photovoltaic generation systems with battery energy storage. IEEE Transactions on Power Electronics, 26(10), 3032-3045.

Yu, X., She, X., Zhou, X., & Huang, A. Q. (2014). Power management for DC microgrid enabled by solid-state transformer. IEEE Transactions on Smart Grid, 5(2), 954-965.

Zhang, L., Sun, K., Xing, Y., Feng, L., & Ge, H. (2011a). A modular grid-connected photovoltaic generation system based on DC bus. IEEE transactions on power electronics, 26(2), 523-531.

Zhang, L., Sun, K., Xing, Y., Feng, L., & Ge, H. (2011b). A modular grid-connected photovoltaic generation system based on DC bus. IEEE transactions on power electronics, 26(2), 523-531.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas