ANÁLISIS DEL PROCESO DE CORTE DE METAL EN UN TORNO CNC, UTILIZANDO DOE y T2 HOTELLING (ANALYSIS OF THE METAL CUTTING PROCESS IN CNC LATHE, USING DOE AND T2 HOTELLING)
Resumen
El objetivo de este trabajo es estudiar los factores de un proceso de manufactura para analizar el impacto que tienen sobre algunas de las variables de respuesta del proceso. En este trabajo se analiza el proceso de corte de metal en un Torno CNC, mediante la implementación de diseño estadístico de experimentos (DOE) y el estadístico T2 Hotelling. Como variables independientes se consideraron tres parámetros de maquinado: el avance, revoluciones por minuto y profundidad de corte. Como variables de respuesta se tomaron los diámetros y el tiempo de procesamiento. Entre los parámetros considerados para este estudio, se encontró que la variable avance, tiene la mayor influencia en la respuesta diámetro. Por otro lado, mediante la aplicación del estadístico T2 Hotelling se llegó a la conclusión de que el proceso está bajo control estadístico.
Palabras Clave: CNC, DOE, T2 Hotelling, variable independiente, variable de respuesta.
Abstract
The goal of this work is to study the factors of a manufacturing process to analyze the impact they have on some of the response variables of the process. This paper analyzes the process of cutting metal in a CNC lathe, through the implementation of statistical design of experiments (DOE) and the statistical T2 Hotelling. As independent variables, three machining parameters were considered: feed rate, revolutions per minute and cutting depth. As response variables, diameters and processing time were taken. Among the parameters considered for this study, it was found that the variable feed rate has the greatest influence on the diameter response. On the other hand, through the application of the T2 Hotelling statistic it was concluded that the process is under statistical control.
Keywords: CNC, DOE, independent variable, response variable, T2 Hotelling.
Texto completo:
107-122 PDFReferencias
Abo-Hawa, M. H.-D. (2018). Multivariate process Capability Assessment and Improvement: a case study. In Proceedings of the 18th Int. AMME Conference, (Vol. 3, p. 5).
Gutiérrez-Pulido. (2008). Análisis y diseño de experimentos. Ciudad de México, México: Editorial: McGraw-Hill Interamericana.
Jaupi, L. H. (2013). Short-Run Multivariate Control Charts for Process Mean and Variability. In Proceeding of the World Congress on Engineering. London.
Joshi, K. N. (2020). Principal Components Based Multivariate Statistical Process Monitoring of Machining Process Using Machine Vision Approach. In New Paradigm of Industry 4.0, Springer, Cham., (pp. 145-160).
Mandal, N. K. (2017). Modelling and optimisation of a sustainable manufacturing process with cnc turning centre. International Journal of Applied Environmental Sciences, vol. 12 (6), p. 1101-1116.
Montgomery, D. C. (2009). Introduction to Statistical Quality Control, Sixth Edition. Arizona: John Wiley & Sons, Inc.
Pawar, P. B. (2018). Investigation of Cutting Force of the AISI D2 Steel in the CNC Turning Process. International Journal of Engineering Technology Science and Research , ISSN 2394 – 3386 Volume 5, Issue 3.
Pérez, L. R. (2015). Predicción de la Rugosidad Superficial del Acero cold rolled 1018 a través de la Metodología de Superficie de Respuesta y Redes Neuronales. Cultura Científica y Tecnológica. (10).
Pillet, M. B. (2013). Multivariate SPC for total inertial tolerancing. International Journal of Metrology and Quality Engineering, vol. 4, no 3, p. 169-175.
Ramachandra, R. (2017). Scenario of surface roughness and material removal rate of h 13 mould steel in CNC end milling process. International Journal of Engineering, Science and Mathematics, vol. 6, no 6, p. 322-327.
Rao, H. P. (2017). Optimization of CNC End Milling Process Parameters for Aluminium 6061 Alloy using Carbide Tool Material by Design of Experiments. International Journal, vol. 3, p.84-90.
Rico, L. N. (2010). Effect of cutting parameters on the roundness of cylindrical bars turned of 1018 steel. Measurements., 132-135.
Sakthivelu, S. &. (2017). Investigating the Effect of Machining Parameters in CNC Turning Using DOE Technique. Work, 2(02), p.13-18.
Senthilkumar, N. S. (2016). Optimization and performance analysis of uncoated and coated carbide inserts during hard turning AISI D2 steel using hybrid GRA-PCA technique. In Applied Mechanics and Materials. Trans Tech Publications., (Vol. 852, pp. 151-159).
Singh, D. C. (2016). Effect of nose radius on surface roughness during CNC turning using response surface methodology. . International Journal of Recent Advances in Mechanical Engineering, vol. 5(2), p. 31-45.
Srivastava, A. S. (2019). Prediction of Surface Roughness for CNC Turning of EN8 Steel Bar Using Artificial Neural Network Model. Journal Européen des Systèmes Automatisés, vol. 52(2), p. 185-188.
Sukumar, M. S. (2014). Optimization and prediction of parameters in face milling of Al-6061 using Taguchi and ANN approach. Procedia Engineering, vol. 97, p. 365-371.
Tong, L. I. (2005). Monitoring defects in IC fabrication using a Hotelling T/sup 2/control chart. IEEE transactions on semiconductor manufacturing, 18(1), 140-147.
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx