INTEGRACIÓN DE UN SISTEMA INALÁMBRICO DE MUESTREO CON ESP8266 Y RASPBERRY PI (WIRELESS SENSOR SYSTEM INTEGRATION BASED ON THE INTERNET OF THINGS)

Lorenzo Antonio García Tena, Osslan Osiris Vergara Villegas, Vianey Guadalupe Cruz Sánchez

Resumen


Resumen

En el presente artículo, se muestra el desarrollo y los resultados obtenidos de un sistema inalámbrico para el muestreo de temperatura y humedad dentro del Laboratorio Nacional de Vivienda y Comunidades Sustentables ubicado en las instalaciones de la Universidad Autónoma de Ciudad Juárez. El sistema se compone de sensores DHT22, tablillas NodeMCU-ESP8266 y un Raspberry Pi 3 que funge como servidor. Además, por medio de una interfaz se ofrece un acceso al sistema que se encuentra conectado a una red de Internet, lo que permite el monitoreo en tiempo real y el análisis histórico de las variables medidas. El propósito del muestreo es medir las propiedades de aislamiento térmico de nuevos materiales propuestos para la construcción de viviendas. Para observar el desempeño del sistema construido se realizaron pruebas de precisión de las mediciones y de tiempos de acceso. Los resultados obtenidos demuestran que el sistema es robusto y ofrece mediciones en tiempo real con un error de 1 grado centígrado y con un tiempo máximo de acceso de 3.6 segundos.

Palabras Claves: Internet de las Cosas, Sensor de temperatura y humedad Raspberry Pi, Linux, Placa NodeMCU-ESP8266.

 

(In this paper, is presented the development and the results obtained of a wireless system for sensing temperature and humidity inside the National Laboratory of Housing and Sustainable Communities located in the facilities of the Autonomous University of Ciudad Juárez. The system is integrated using DHT22 sensors, a NodeMCU-ESP8266 development board and a Raspberry Pi 3 that acts as a server. Additionally, the system is accessible through an interface to the Internet network, which allows real-time monitoring and the historical analysis of measures variables. The main purpose of the sensing task is to measure the isolation properties of new proposed materials for housing development. To validate the performance of the built system, testing was performed on the data measured as well as access timing. The results obtained show the robust performance of the proposed system and how can it offer real-time data with a mean error of 1 Celsius degree, and with a maximum access time of 3.6 seconds.

Keywords: Internet of Things, Temperature and humidity sensor, Raspberry Pi, Linux, NodeMCU-ESP8266 board.)


Texto completo:

203-218 PDF

Referencias


M. Abu, S. Lin, D. Niyato, H. Tan, Machine learning in wireless sensor networks: Algorithms, strategies, and applications, IEEE Communications Surveys & Tutorials, vol. 16, no. 4, pp. 1996-2018, 2014.

M. Alawar, S. Abu, CSS-tutor: An intelligent tutoring system for CSS and HTML, International Journal of Academic Research and Development, vol. 2, no. 1, pp. 94-98, 2017.

T. Amanatidis, A. Chatzigeorgiou, Studying the evolution of PHP web applications, Information and Software Technology, vol. 72, pp. 48-67, 2016.

D. Aziz, Webserver based smart monitoring system using ESP8266 node MCU module, International Journal of Scientific and Engineering Research, vol. 9, no. 6, pp. 801-808, 2018.

A. Boukerche, P. Sun, Connectivity and coverage based protocols for wireless sensor networks, Ad Hoc Networks, vol. 80, pp. 54-69, 2019.

S. Ferdoush, X. Li, Wireless sensor network system design using Raspberry Pi and Arduino for environmental monitoring applications, Procedia Computer Science, vol. 34, pp. 103-110, 2014.

R. Firmansyah, A. Widodo, A. Romadhon, M. Hudha, P. Saputra, N. Lestari, The prototype of infant incubator monitoring system based on the Internet of things using NodeMCU ESP8266, Journal of Physics, vol. 1171, pp. 1-9, 2018.

A. García, V. Fresno, R. Martínez, A. Zubiaga, Using fuzzy logic to leverage HTML markup for web page representation, IEEE Transactions on Fuzzy Systems, vol. 25, no. 4, pp. 919-933, 2017.

J. Horn, A Koohang, J. Paliszkiewicz, The Internet of things: Review and theoretical framework, Expert Systems with Applications, vol. 133, pp. 97-108, 2019.

B. Mihai, How to use the DHT22 sensor for measuring temperature and humidity with the Arduino board, Acta Uiversitatis Cibiniensis – Technical Series, vol. 68, pp. 22-25, 2016.

Onset, (Acceso en mayo 2019). Sistema HOBO Temperature/Relative Humidity/Light/External Data Logger, [Disponible en]: https://www.onsetcomp.com/products/data-loggers/u12-012

Onset, (Acceso en mayo 2019). Software HOBOware Pro, [Disponible en]: https://www.onsetcomp.com/products/software/bhw-pro-dld

P. Rawat, K. Deep, H. Chaouchi, J. Bonin, Wireless sensor networks: A survey on recent developments and potential synergies, The Journal of Super Computing, vol. 68, no. 1, pp. 1-48, 2014.

P. Ray, A survey on Internet of things architectures, Journal of King Saud University - Computer and Information Sciences, vol. 30, no. 3, pp. 291-319, 2018.

M. Ruta, F. Scioscia, G. Loseto, F. Gramegna, S. Ieva, A. Pinto, E. Di Sciascio, Social Internet of things for domotics: A knowledge-based approach over LDP-CoAP, Semantic Web, vol. 9, no. 6, pp. 781-802, 2018.

M. Sadegh, H. Barati, Dynamic key management algorithms in wireless sensor networks: A survey, Computer Communications, vol. 134, pp. 52-69, 2019.

K. Salah, J. Alcaraz, J. Bernal, J. Marín, S. Zeadally, Analyzing the security of Windows 7 and Linux for cloud computing, Computers & Security, vol. 34, pp. 113-122, 2013.

K. Skiadopoulos, A. Tsipis, K. Giannakis, G. Koufoudakis, E. Christopoulou, K. Oikonomou, G. Kormentzas, I. Stavrakakis, Synchronization of data measurements in wireless sensor networks for IoT applications, Ad Hoc Networks, vol. 89, pp. 47-57, 2019.

I. Targio, V. Chang, N. Badrul, K. Adewole, I. Yaqoob, A. Gani, E. Ahmed, H. Chiroma, The role of big data in smart city, International Journal of Information Management, vol. 36, no. 5, pp. 748-758, 2016.

V. Vujovic, M. Maksimovic, Raspberry Pi as a sensor web node for home automation, Computers & Electrical Engineering, vol. 44, pp. 153-171, 2015.

K. Wang, Y. Wang, X. Hu, Y. Sun, D. Deng, A. Vinel, Y. Zhang, Wireless big data computing in smart grid, IEEE Wireless Communications, vol. 24, no. 2, pp. 58-64, 2017.

A. Zanella, N. Bui, A. Castellani, L. Vangelista, M. Zorzi, Internet of things for smart cities, IEEE Internet of Things Journal, vol. 1, no. 1, pp. 22-32, 2014.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas