MONITOREO DE SIGNOS VITALES USANDO IoT (MONITORING OF VITAL SIGNS USING IoT)

José Ignacio Vega Luna, Mario Alberto Lagos Acosta, Francisco Javier Sánchez Rangel, José Francisco Cosme Aceves

Resumen


Resumen

Se presenta un sistema para monitorear los signos vitales de una persona desde la Internet. El objetivo fue reportar a un servidor ubicado en la nube los signos vitales de un paciente: presión arterial, ritmo cardiaco, temperatura y frecuencia respiratoria. Fue realizado para que personal médico realice el diagnóstico del estado de salud de personas que vivan solas o en lugares apartados y brindar atención oportuna. El sistema se compone de tres módulos: el colector de signos vitales, la interfaz de comunicación inalámbrica y la interfaz de usuario. El colector de información transmite el valor de los signos vitales a la plataforma de IoT ThinkSpeak y la interfaz de usuario permite visualizar el valor de los signos. Si alguno de los signos alcanza el umbral establecido, se transmite un SMS y un mensaje de WhatsApp a un teléfono móvil. El alcance del sistema fue 48 metros al punto de acceso.

Palabras Claves: Internet, presión sanguínea, ritmo cardiaco, signos vitales, WiFi.

 

Abstract

This paper presents a system to monitor the vital signs of a person from the Internet. The objective was to report to a server located in the cloud the vital signs of a patient: blood pressure, heart rate, temperature and respiratory rate. It was made for medical personnel to diagnose the state of health of people living alone or in remote places and provide timely care. The system consists of three modules: the vital signs collector, the wireless communication interface and the user interface. The information collector transmits the value of the vital signs to the ThinkSpeak IoT platform and the user interface allows you to visualize the value of the signs. If any of the signs reaches the set threshold, an SMS and a WhatsApp message is transmitted to a mobile phone. The range of the system was 48 meters to the access point.

Keywords: Blood pressure, heart rate, Internet, vital signs, WiFi.


Texto completo:

751-769 PDF

Referencias


Celler, B. & Sparks, R. Home Telemonitoring of Vital Signs-Technical Challenges and Future Directions. IEEE Journal of Biomedical and Health Informatics. Volume: 19, Issue: 1, pp. 82-91, August, 2016.

Daou, R., Aad, E. & Nakhle, F. Patient vital signs monitoring via android application. International Conference on Advances in Biomedical Engineering Proceedings. Beirut, Lebanon. Sept., pp. 166-169, 2015.

Gómez, J., Oviedo, B. & Zhuma, E. Patient Monitoring System Based on Internet of Things. The 7th International Conference on Ambient Systems, Networks and Technologies. Proceedings. Madrid, Spain. May, pp. 90-97, 2016

Hall, T., Malone, N. & Tsay, J. Long-term vital sign measurement using a non-contact vital sign sensor inside an office cubicle setting. 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Proceedings. Orlando, FL, USA. Aug., pp. 4845-4848, 2016.

Ichimura, T. & Hirakoso, N. A novel patient simulator that generates artificial vital signs. IEEE 6th Global Conference on Consumer Electronics Proceedings. Nagoya, Japan. Oct., pp. 1-2, 2017.

Lomelí-Herrera, L., Aguayo-Ríos, F. & Martínez-Peláez, R. Dispositivo telemétrico para monitoreo de frecuencia cardiaca y saturación de oxígeno. Revista Pistas Educativas. No. 128, pp. 926-943, 2018.

MetaGeek, LLC. inSSIDer: See Through the Noise. Disponible en: https://www.metageek.com/products/inssider/. Julio, 2019.

Mohammed, J., Lung, C. & Ocneanu, A. Internet of Things: Remote Patient Monitoring Using Web Services and Cloud Computing. IEEE International Conference on Internet of Things (iThings). Taipei, Taiwan. Sept., pp. 256-263, 2014.

Numanoglu, R., Koçak, O. & Malhan, S. Evaluation of the Methods Used for the Vital Signs Measurement in Hospitalized Patients. Medical Technologies National Congress Proceedings. Magusa, Cyprus. Nov., pp. 1-4, 2018.

Pallis, G., Ferreira, N. & Hildebrand, L. Wireless transmission of vital signs of entrapped victims during search and rescue operations in collapsed buildings. 4th International Conference on Wireless Mobile Communication and Healthcare-Transforming Healthcare Through Innovations in Mobile and Wireless Technologies Proceedings. Athens, Greece. Nov., pp. 254-257, 2014.

Patel, W., Patel, C. & Valderrama, C. IoMT based Efficient Vital Signs Monitoring System for Elderly Healthcare Using Neural Network. International Journal of Research Vol.: VIII, Issue: I, pp. 239-245, 2019.

Raji, A., Devi, P. & Jeyaseeli, P. Respiratory monitoring system for asthma patients based on IoT. Online International Conference on Green Engineering and Technologies Proceedings. Coimbatore, India. Nov., pp. 1-6, 2016.

Ramírez-López, L., Marín-López, A. & Rodríguez, A. Aplicación del Internet de las Cosas en la salud: caso en la Enfermedad Pulmonar Obstructiva Crónica. Ciencia y poder aéreo, Vol. 13, No. 1, pp. 82-93, 2018.

Rizal, A. & Riyadi, M. FPGA-based system for countinous monitoring of three vital signs of human body. 2nd International Conference on Information Technology, Computer, and Electrical Engineering Proceedings. Semarang, Indonesia. Oct., pp. 221-226, 2015.

Saha, H., Paul, D. & Chaudhury, S. Internet of Thing based healthcare monitoring system. 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference Proceedings. Vancouver, BC, Canada. Oct., pp. 531-536, 2017.

Saraswathi, T. & Amutha, S. Iot Based Wireless Healthcare Monitoring. International Journal of Emerging Trends in Science and Technology. Vol.: 03, Issue: 05, pp. 2016.

Shu, M., Tang, M. & Yang, M. The Vital Signs Real-Time Monitoring System Based on Internet of Things. 4th International Conference on Information Science and Control Engineering Proceedings. Changsha, China. July, pp. 747-751, 2017.

Sinhal, R., Singh, K. & Shankar, A. Estimating vital signs through non-contact video-based approaches: A survey. International Conference on Recent Innovations in Signal processing and Embedded Systems Proceedings. Bhopal, India. Oct., pp. 139-141, 2017.

Sokolovsky, P. Lightweight asyncio-like library for MicroPython, built around native Python coroutines, Project description. Disponible en: https://pypi.org/project/micropython-uasyncio/. June, 2019.

Srinivas, M., Durgaprasadarao, P. & Prudhvi Raj, V. Intelligent medicine box for medication management using IoT. 2nd International Conference on Inventive Systems and Control Proceedings. Coimbatore, India. Jan., pp. 32-34, 2018.

Terán-Flores, E. Sistema de monitoreo remoto y visualización para dispositivos de análisis de signos vitales orientados a e-health. http://repositorio.espe.edu.ec/handle/21000/20476. 2019.

Traversr, G., Ciccareli G. & Schwartz S. Physiologic Status Monitoring via the Gastrointestinal Tract. Plos One, pp. 1-13, 2015.

Tseng, C. & Lin, Y. 24-GHz Self-Injection-Locked Vital-Sign Radar Sensor With CMOS Injection-Locked Frequency Divider Based on Push–Push Oscillator Topology. IEEE Microwave and Wireless Components Letters. Volume: 28, Issue: 11, pp. 1053-1055, 2018.

Wang, G., Han, H. & Kim, S. Wireless Vital Sign Monitoring Using Penetrating Impulses. IEEE Microwave and Wireless Components Letters Volume: 27, Issue: 1, pp. 94-96, 2017.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas