EMPAREJAMIENTO DE PUNTOS PARA ESTIMAR DEFORMACIÓN EN LÁMINAS DE METAL EN EL PROCESO DE FORMADO MECÁNICO (PAIRING POINTS TO ESTIMATE DEFORMATION IN METAL SHEETS IN THE MECHANICAL FORMING PROCESS)

Alejandro Israel Barranco Gutiérrez, José Alfredo Padilla Medina, Juan José Martínez Nolasco

Resumen


Resumen

            En el presente artículo se propone un método semiautomático de emparejamiento de puntos entre imágenes estereoscópicas para estimar deformación superficial de láminas metálicas en procesos de estampado mecánico. Para el procedimiento las hojas de metal son grabadas con un patrón uniforme de círculos antes de ser deformadas; por lo que al medir las posiciones 3D inicial y final de los puntos grabados se obtiene la información suficiente para calcular la deformación superficial. El método propuesto toma ventaja de la similitud de las marcas para buscar correspondencias, de que están agrupadas como una malla y de la restricción de una deformación superficial menor a 50% de la lámina (entendiendo que la deformación es la resta entre el tamaño inicial menos el final dividido entre el tamaño inicial), su eficiencia es comparada con la obtenida por los métodos DIC (Digital Image Correlation) y FLANN (Fast Library for Approximate Nearest Neighbors) sobre MATLAB. En el sistema de medición se indica por el usuario, la posición de dos marcas vecinas en cada imagen para tener una distancia y pendiente iniciales de búsqueda de sus centroides. A partir de los centroides correspondientes se computa la triangulación estereoscópica y con esto la posición de los centroides en 3D y finalmente se calcula la deformación promediando las diferencias de las distancias respecto a la distancia de referencia con sus cuatro vecinos divididas entre la distancia de referencia. Este tipo de sistemas son de gran importancia para la industria metal-mecánica debido a que con la medición de deformaciones superficiales se detectan fallas por fractura o adelgazamientos marginales en sus procesos de manufactura. Los resultados mostraron que la cantidad de correspondencias encontradas por esta propuesta es de 100% en zonas de 10 x 10 marcas; esto permitió calcular la deformación superficial en 2.5 segundos con media de error de 16x="> 0.0410 mm.

Palabra(s) Clave: Emparejamiento de puntos, Industria de la deformación de láminas, Visión estereoscópica.

 

Abstract

            In the present article is proposed a semiautomatic method for pairing of points between stereoscopic images to estimate superficial deformation of metal sheets in mechanical stamping processes. For the procedure the metal sheets are engraved with a uniform pattern of circles before being deformed; Therefore, when measuring the initial and final 3D positions of the recorded points, sufficient information is obtained to calculate the superficial deformation. The proposed method takes advantage of the similarity of the marks to search correspondences, of which they are grouped as a mesh and of the restriction of a superficial deformation less than 50% of the sheet (understanding that the deformation is the subtraction between the initial size less the final divided by the initial size), its efficiency is compared with that obtained by the DIC (Digital Image Correlation) and FLANN (Fast Library for Approximate Nearest Neighbors) methods using MATLAB. In the measurement system is indicated by the user, the position of two neighboring marks in each image to have an initial distance and slope of search of their centroids. From the corresponding centroids the stereoscopic triangulation is computed and with this the position of the centroids in 3D and finally the deformation is calculated by averaging the differences of the distances with respect to the reference distance with its four neighbors divided by the reference distance. This type of systems is of great importance for the metal-mechanical industry because with the measurement of superficial deformations faults by fracture or marginal thinning are detected in their manufacturing processes. The results showed that the number of correspondences found by this proposal is 100% in zones of 10 x 10 marks; this allowed to calculate the superficial deformation in 2.5 seconds with average error of x ̅ = 0.0410 mm.

Keywords: Image matching, steel industry, stereo vision.


Texto completo:

877-896 PDF

Referencias


Bao-Quan, S., Jin, L., 2012. Circular grid pattern based surface strain measurement system for sheet metal forming. Optics and Lasers in Engineering Vol. 50, p. 1186-1195. DOI: 10.1016/j.optlaseng.2012.04.007

Barranco-Gutierrez, A. I., Rosales-Andrade, A. M., Martínez-Díaz, S., Padilla-Medina, J. A., Pérez-Pinal, F. J., 2016. Implementación en Android del método "Estructura desde el movimiento". DYNA Ingenieria e Industria Vol. 92, No. 4, p. 379. DOI: 10.6036/8182

Cofaru, C., Philips, W., Paepegem, W. V., 2012. A novel speckle pattern Adaptive digital image correlation approach with robust strain calculation. Optics and Lasers in Engineering Vol. 50, p. 187-198. DOI: 10.1016/j.optlaseng.2011.09.006

Cyrille, B., Philippe, D., 2016. Automatic Camera Calibration. US Patents. December 2016. US20160350921 A1.

Garcia, D., Orteu, J. J., Penazzi, l., 2002. A combined temporal tracking and stereo-correlation technique for accurate measurement of 3D displacements: application to sheet metal forming. Journal of Materials Processing Technology Vol. 125-126, p. 736-742. DOI: S0924-0136(02)00380-1

García-Rodenas, L.A., Araujo, P., Bruyère, V.I.E., Morando, P.J., Regazzoni, A.E., Blesa, M.A., 2004. A Model for The Dissolution of Metal Oxides Mediated by Heterogeneous Charge Transfer. Anales de la Asociación Química Argentina. vol.92 n.1-3. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0365-03752004000100007

Gayubo, F., Gonzalez, J. L., De la Fuente, E., Miguel, F., Pern, J. R., 2006. On-line machine vision system for detect split defects in sheet-metal. 18th International Conference on Pattern Recognition, Hong Kong, p. 723-726. DOI: 10.1109/ICPR.2006.902

Genovese, K., Sorgente, D., 2018. A morphing-based scheme for large deformation analysis with stereo-DIC. Optics and Lasers in Engineering. Vol. 104, pp. 159–172. DOI: http://dx.doi.org/10.1016/j.optlaseng.2017.06.020

Gom-mbH, 2014. ARGUS - Optical Forming Analysis, GOM mbH company.

Hartley, R., Zisserman, A., 2003. Multiple view geometry in computer vision. Segunda edición. Cambridge U. K., pp. 237-360.

Jia, Z., Yang, J., Liu, W., Wang, F., Liu, Y., Wang, L., Fan, C., Zhao, K., 2015. Improved camera calibration method based on perpendicularity compensation for binocular stereo vision measurement system. Optics Express Vol. 23-12, p. 15205-15223. DOI: 10.1364/OE.23.015205

Kalpakjian, S., Schmid, S. R., 2002. Manufactura, ingeniería y tecnología. Pearson, México.

Lava, P., Coppieters, S., Wang, Y., Van, H. P., Debruyne, D., 2011. Error estimation in measuring strain fields with DIC on planar sheet metal specimens with a non-perpendicular camera alignment. Optics and Lasers in Engineering Vol. 49-1, p. 57-65. DOI: 0.1016/j.optlaseng.2010.08.017

Li, L.G., Liang, J., Shi, B. Q., Guo, C., Hu, H. 2014. Grid-based photogrammetry system for large scale sheet metal strain measurement. Optik Vol. 125-19, p. 5508-5514. DOI: 10.1016/j.ijleo.2014.06.069

Mei, Q., Gaoa, J., Lina, H., Chena, Y., Yunboa, H., Wanga, W., Zhanga, G., Chena, X., 2016. Structure light telecentric stereoscopic vision 3D measurement system based on Scheimpug condition. Optics and Lasers in Engineering Vol. 86, November, p. 83-91.

DOI: 10.1016/j.optlaseng.2016.05.021

Muja, M., Lowe, D. G., 2009. Fast approximate nearest neighbors with automatic algorithm configuration. International Conference on Computer Vision Theory and Applications. Lisboa, p. 331-340.

Muja, M., Lowe, D. G., 2012. Fast Matching of Binary Features. Ninth Conference on Computer and Robot Vision. Toronto, p. 404-410.

DOI: 10.1109/CRV.2012.60

Orteu, J. J., 2009. 3-D computer vision in experimental mechanics. Optics and Lasers in Engineering Vol. 47, p. 282-291. DOI: 10.1016/j.optlaseng.2007.11.009

Piironen, T., Silven, O., Pietikinen, M., Laitinen, T., Strmmer, E., 1990. Automated visual inspection of rolled metal surfaces. Machine vision and applications Vol. 3-4, p. 247-254. DOI: 10.1007/BF01211850

Rosten, E., Drummond, T., 2006. Machine learning for high-speed corner detection. Proceedings of the 9th European Conference on Computer Vision, Berlin, p. 430-443.

https://link.springer.com/chapter/10.1007/11744023_34

Shi, J., Chen, F., Lu, J., Chen, G., 2013. An evolutionary image matching approach. Applied Soft Computing Vol. 13-6, p. 3060-3065.

Taleb, A. B., Gottmann, A., Bambach, M., Hirt, G., Bergweiler, G., Diettrich, J., Steiners, M., Saeed-Akbari, A., 2011. Review on the development of a hybrid incremental sheet forming system for small batch sizes and individualized production. Production Engineering Vol. 5, Issue 4, p. 393–404. DOI: 10.1007/s11740-011-0325-y

Tsai, T. R., 1987. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal of robotics and automation. Vol. RA-3, No. 4, pp. 323-344.

Zhang, Z., 2000. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 22-11, p. 1330 - 1334. DOI: 10.1109/34.888718






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas