PROPUESTA DE UN SISTEMA DE CONTROL PARA UN CONVERTIDOR BIDIRECCIONAL CD-CA EMPLEADO PARA TRANSFERIR ENERGÍA ENTRE UN SISTEMA FOTOVOLTAICO Y LA RED ELÉCTRICA DE CORRIENTE ALTERNA (PROPOSAL FOR A CONTROL SYSTEM FOR AN EMPLOYED CD-CA BIDIRECTIONAL CONVERTER TO TRANSFER ENERGY BETWEEN A PHOTOVOLTAIC SYSTEM AND THE ALTERNATE CURRENT ELECTRICAL NETWORK)

Juan José Martínez Nolasco, Stefanny Lizet Rangel Pichardo, Francisco Gutiérrez Vera, Horacio Orozco Mendoza

Resumen


Resumen

Uno de los principales retos en las Micro-Redes de Corriente Directa (µR-CDs) es el diseño e implementación de los sistemas de control encargados de la manipulación de los convertidores electrónicos de potencia. En este trabajo se presenta una propuesta para el diseño e implementación de un sistema de control embebido capaz de manipular la transferencia de energía entre un sistema fotovoltaico y la red eléctrica principal de corriente alterna. Este sistema de control se aplica sobre el convertidor bidireccional CD-CA que forma parte de un prototipo experimental de una µR-CD conformada por un par de Arreglos Fotovoltaicos (AFs) de 500W cada uno, interconexión a la Red Eléctrica Principal (REP) de Corriente Alterna (CA) con una capacidad de 1kW y cargas de CD y CA (cargas resistivas y cargas no lineales como luminarias LED, luminarias fluorescentes y equipo de cómputo) que trabajara en corriente directa.

Palabra(s) Clave: Convertidor electrónico de potencia, corriente alterna, corriente directa, micro-red, transferencia de energía.

 

Abstract

A main concern in DC Micro-Grids (µR-CDs) is the design and implementation of control systems which are in charge of manipulation of power converters. In this paper, an embedded control system design and implementation is proposed in order to transfer energy from a photovoltaic system to the main grid. This control system is applied over a bidirectional DC-AC converter which is part of a µR-CD comprised by two 500 W PV arrays (AFs), a 1 kW point of common coupling (REP) with the AC main grid, as well as AC and DC loads (resistive and non-linear loads such as LED and fluorescent lamps and computer equipment) which operates in DC.

Keywords: AC, DC, power converters, transfer energy.


Texto completo:

1190-1203 PDF

Referencias


Attanasio, R., Gennaro, F., & Scuderi, G. (2013, October). A grid tie micro inverter with reactive power control capability. In AEIT Annual Conference, 2013 (pp. 1-6). IEEE.

Bae, S., & Kwasinski, A. (2012). Dynamic modeling and operation strategy for a microgrid with wind and photovoltaic resources. IEEE Transactions on smart grid, 3(4), 1867-1876.

Dizqah, A. M., Maheri, A., Busawon, K., & Kamjoo, A. (2015). A multivariable optimal energy management strategy for standalone dc microgrids. IEEE transactions on power systems, 30(5), 2278-2287.

Dragičević, T., Lu, X., Vasquez, J. C., & Guerrero, J. M. (2016). DC microgrids—Part I: A review of control strategies and stabilization techniques. IEEE Transactions on power electronics, 31(7), 4876-4891.

Hasanien, H. M. (2016). An adaptive control strategy for low voltage ride through capability enhancement of grid-connected photovoltaic power plants. IEEE Transactions on Power Systems, 31(4), 3230-3237.

Jin, C., Wang, P., Xiao, J., Tang, Y., & Choo, F. H. (2014). Implementation of hierarchical control in DC microgrids. IEEE transactions on industrial electronics, 61(8), 4032-4042.

Mahmoud, M. S., Rahman, M. S. U., & Fouad, M. S. (2015). Review of microgrid architectures–a system of systems perspective. IET Renewable Power Generation, 9(8), 1064-1078.

Morstyn, T., Hredzak, B., Demetriades, G. D., & Agelidis, V. G. (2016). Unified distributed control for DC microgrid operating modes. IEEE Transactions on Power Systems, 31(1), 802-812.

Olivares, D. E., Mehrizi-Sani, A., Etemadi, A. H., Cañizares, C. A., Iravani, R., Kazerani, M.,. & Jimenez-Estevez, G. A. (2014). Trends in microgrid control. IEEE Transactions on smart grid, 5(4), 1905-1919.

Patil, K. R., & Patel, H. H. (2016). Modified Dual Second-order Generalized Integrator FLL for Frequency Estimation Under Various Grid Abnormalities. Transactions on Environment and Electrical Engineering, 1(4), 10-18.

Shadmand, M. B., & Balog, R. S. (2014). Multi-objective optimization and design of photovoltaic-wind hybrid system for community smart DC microgrid. IEEE Transactions on Smart Grid, 5(5), 2635-2643.

Sun, K., Zhang, L., Xing, Y., & Guerrero, J. M. (2011). A distributed control strategy based on DC bus signaling for modular photovoltaic generation systems with battery energy storage. IEEE Transactions on Power Electronics, 26(10), 3032-3045.

Zhang, L., Sun, K., Xing, Y., Feng, L., & Ge, H. (2011). A modular grid-connected photovoltaic generation system based on DC bus. IEEE transactions on power electronics, 26(2), 523-531.

Zhang, L., Wu, T., Xing, Y., Sun, K., & Gurrero, J. M. (2011, March). Power control of DC microgrid using DC bus signaling. In Applied Power Electronics Conference and Exposition (APEC), 2011 Twenty-Sixth Annual IEEE (pp. 1926-1932). IEEE.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas