IDENTIFICACIÓN DE PARÁMETROS DE UN MOTOR DC PARA EL CONTROL DE PAR SIN SENSOR DE UNA INTERFAZ HÁPTICA (PARAMETER IDENTIFICATION OF A DC MOTOR FOR SENSOR-FREE TORQUE CONTROL OF A HAPTIC INTERFACE)

Alma Guadalupe Rodríguez Ramírez, Manuel de Jesús Nandayapa Alfaro, Osslan Osiris Vergara Villegas

Resumen


Resumen

   Las interfaces hápticas han tenido impacto en aplicaciones que buscan la inmersión del usuario, tal es el caso de las áreas de entrenamiento, educación, medicina y entretenimiento. El impacto que tienen en dichas áreas recae en el hecho de que una interfaz háptica permite la interacción, entre el usuario y un ambiente remoto o virtual, por medio del sentido del tacto. En el presente artículo, se propone un método para la identificación experimental de los parámetros constante de par y momento de inercia de un motor de corriente directa. La identificación de ambos parámetros es indispensable para el diseño de un control de par sin sensor basado en un Observador de Perturbaciones (DOB, por sus siglas en inglés), cuando no se cuenta con la información del fabricante. Se implementó un control de par basado en DOB utilizando los parámetros experimentales de control de par y momento de inercia. Dicho control se implementó en un motor DC que a su vez fungió como interfaz háptica, permitiéndole ejercer un par de referencia. Los resultados obtenidos de la identificación de los parámetros permitieron obtener una respuesta del DOB similar a las de un sensor de par.

Palabra(s) Clave: control de par, identificación de parámetros, interfaz háptica, motor DC.

 

Abstract

   Haptic interfaces have had an impact on applications that seek user immersion, such as training, education, medicine and entertainment. The impact they have on this type of applications lies in the fact that haptic interfaces allow an interaction, between the user and a remote or virtual environment, through the sense of touch. This article proposes a method for the experimental identification of the constant torque and moment of inertia parameters of a DC motor. The identification of these parameters is essential for the design of a sensorless torque control based on a Disturbance Observer (DOB), when the manufacturer's information is not available. The implementation of a torque control based on DOB was achieved using the experimental parameters of torque control and moment of inertia. This control was implemented in a DC motor which served as a haptic interface, allowing to display a reference torque. The parameter identification results allowed to obtain a DOB response corresponding to a torque sensor.

Keywords: torque control, parameter identification, haptic interface, DC motor.


Texto completo:

1322-1338 PDF

Referencias


Arshad, S., Qamar, S., Jabbar, T., & Malik, A. (2010). Parameter estimation of a DC motor using ordinary least squares and recursive least squares algorithms. Proceedings of the 8th International Conference on Frontiers of Information Technology, FIT’10. https://doi.org/10.1145/1943628.1943659

Beloiu, R. (2014). Dynamic determination of DC motor parameters-Simulation and testing. Proceedings of the 2014 6th International Conference on Electronics, Computers and Artificial Intelligence, ECAI 2014, 13–18. https://doi.org/10.1109/ECAI.2014.7090191

Choi, I., Ofek, E., Benko, H., Sinclair, M., & Holz, C. (2018). CLAW: a multifunctional handheld haptic controller for grasping, touching, and triggering in virtual reality. In 2018 CHI Conference on Human Factors in Computing Systems (CHI) (pp. 1–13). https://doi.org/10.1145/3173574.3174228

Edwards, B. I., Bielawski, K. S., Prada, R., & David, A. (2018). Haptic virtual reality and immersive learning for enhanced organic chemistry instruction. Virtual Reality in Education, 1–11. https://doi.org/10.1007/s10055-018-0345-4

Intani, P., Boonwong, P., & Mitsantisuk, C. (2013). Study on sensorless force control based on disturbance observer with friction force compensation. In 13th International Conference on Control, Automation and Systems (ICCAS) (pp. 593–598). Kimdaejung Convention Center, Gwangju, Korea.

Jabri, M., Belgacem, A., & Jerbi, H. (2009). Moving horizon parameter estimation of series DC motor using genetic algorithm. 2009 World Congress on Nature and Biologically Inspired Computing, NABIC 2009 - Proceedings, 1528–1531. https://doi.org/10.1109/NABIC.2009.5393668

Mitsantisuk, C., Nandayapa, M., Ohishi, K., & Katsura, S. (2012). Parameter estimation of flexible robot using multi-encoder based on disturbance observer. Industrial Electronics Conference (IECON), (1), 4424–4429. https://doi.org/10.1109/IECON.2012.6389473

Murphy, K., & Darrah, M. (2015). Haptics-based apps for middle school students with visual impairments. IEEE Transactions on Haptics, 8(3), 318–326. https://doi.org/10.1109/TOH.2015.2401832

Nandayapa, M., Mitsantisuk, C., & Ohishi, K. (2012). Improving bilateral control feedback by using novel velocity and acceleration estimation methods in FPGA. In International Workshop on Advanced Motion Control (AMC) (pp. 1–6). Sarajevo, Bosnia-Herzegovina: IEEE. https://doi.org/10.1109/AMC.2012.6197024

Obeidat, M. A., Wang, L. Y., & Lin, F. (2013). Real-time parameter estimation of PMDC motors using quantized sensors. IEEE Transactions on Vehicular Technology, 62(7), 2977–2986. https://doi.org/10.1109/TVT.2013.2251431

Oboe, R., & Pilastro, D. (2016). Performance improvement of haptic device in bilateral control using aaKF and RFOB. Industrial Electronics Conference (IECON), 6421–6428. https://doi.org/10.1109/IECON.2016.7793855

Ohishi, K., Ohnishi, K., & Miyachi, K. (1983). Torque-speed regulation of DC motor based on load torque estimation method. 40th Annual Conference of the IEEE Industrial Electronics Society (IECON).

Ohnishi, K., Shibata, M., & Murakami, T. (1996). Motion control for advanced mechatronics. IEEE/ASME Transactions on Mechatronics, 1(1), 56–67.

Puangdownreong, D., Hlungnamtip, S., Thammarat, C., & Nawikavatan, A. (2017). Application of flower pollination algorithm to parameter identification of DC motor model. 2017 International Electrical Engineering Congress, IEECON 2017, (March), 8–10. https://doi.org/10.1109/IEECON.2017.8075889

Rubaai, A., & Kotaru, R. (2000). Online identification and control of a dc motor using learning adaptation of neural networks. IEEE Transactions on Industry Applications, 36(3), 935–942. https://doi.org/10.1109/28.845075

Sariyildiz, E., & Ohnishi, K. (2014). A comparison study for force sensor and reaction force observer based robust force control systems. In IEEE International Symposium on Industrial Electronics (ISIE) (pp. 1156–1161). Istanbul, Turkey: IEEE. https://doi.org/10.1109/ISIE.2014.6864777

Sariyildiz, E., & Ohnishi, K. (2015a). An adaptive reaction force observer design. IEEE/ASME Transactions on Mechatronics, 20(2), 750–760. https://doi.org/10.1109/TMECH.2014.2321014

Sariyildiz, E., & Ohnishi, K. (2015b). On the explicit robust force control via disturbance observer. IEEE Transactions on Industrial Electronics, 62(3), 1581–1589. https://doi.org/10.1109/TIE.2014.2361611

Tian, D., & Zhang, Y. (2015). Remote haptic sensing using sliding-mode assist disturbance observer as force detector. IET Control Theory & Applications, 9(10), 1517–1524. https://doi.org/10.1049/iet-cta.2014.0435

Ugurlu, B., Nishimura, M., Hyodo, K., Kawanishi, M., & Narikiyo, T. (2012). A framework for sensorless torque estimation and control in wearable exoskeletons. 12th IEEE International Workshop on Advanced Motion Control (AMC), 1–7. https://doi.org/10.1109/AMC.2012.6197032

Zhou, Y., Soh, Y. C., & Shen, J. X. (2013). Speed estimation and nonmatched time-varying parameter identification for a DC motor with hybrid sliding-mode observer. IEEE Transactions on Industrial Electronics, 60(12), 5539–5549. https://doi.org/10.1109/TIE.2012.2228140






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas