ANÁLISIS DE VULNERABILIDAD DE LA INFRAESTRUCTURA DE TRANSPORTE APLICANDO REDES COMPLEJAS: RED DE AVENIDAS DE LA CIUDAD DE CELAYA, GUANAJUATO (VULNERABILITY ANALYSIS OF TRANSPORTATION INFRASTRUCTURE APPLYING COMPLEX NETWORKS: CELAYA’S CITY STREET NETWORK)
Resumen
Resumen
Los sistemas de redes están presentes en la infraestructura de los países y las ciudades, en el caso del transporte terrestre, su infraestructura está formada por redes de carreteras, avenidas y calles. El análisis de vulnerabilidad de la infraestructura física permite cuantificar la sensibilidad del sistema ante amenazas, riesgos o perturbaciones que puedan presentarse en la red. En este articulo se analizó la red de avenidas principales de Celaya, empleando el enfoque de redes complejas, antes y después de la eliminación de dos nodos importantes que son entradas y salidas de la ciudad, donde se observó que los nodos con índice más alto de cercanía, no se vio afectado en gran medida, ya que quedaron de la misma forma, aunque los nodos eliminados afectaron el flujo de entrada y salida de vehículos a la ciudad. Los resultados son de interés para profesionales dedicados al diseño de sistemas logísticos de transporte.
Palabras clave: cercanía, redes complejas, red de transporte, vulnerabilidad.
Abstract
Network systems are present in the infrastructure of countries and cities. In the case of land transport, this infrastructure is formed by networks of roads, avenues and streets. The vulnerability analysis of the physical infrastructure allows quantifying the sensitivity of the system to threats, risks or disturbances that may occur on the network. In this article, the main avenue network of Celaya was analyzed, using the complex networks approach, before and after the elimination of two important nodes which are entrances and exits of the city. It was observed that the nodes with the highest index of closeness, wasn´t greatly affected, since they were the same, even though the nodes removed affected the flow of vehicles into and out of the city. The results are of interest to professionals dedicated to the design of logistics transport systems.
Keywords: closeness centrality, complex networks, transport network, vulnerability.
Texto completo:
375-391 PDFReferencias
Barabási, A. L. (2016). Network Science by Albert-László Barabási. Recuperado el 2018, de Network Science by Albert-László Barabási: http://networksciencebook.com/
Boeing, G. (2018). A Multi-Scale Analysis of 27,000 Urban Street Networks: Every US City, Town, Urbanized Area, and Zillow Neighborhood. Environmental and Planning B: Urban Analytics and City Science, 1-18. doi:10.1177/2399808318784595
Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1), 55-71. doi:10.1016/j.socnet.2004.11.008
Cardillo, A., Scellato, S., Latora, V., & Porta, S. (2006). Structural Properties of Planar Graphs of Urban Street Patterns. Physical Review E, 73(6), 1-7. doi:10.1103/PhysRevE.73.066107
Cats, O. (2017). Topological evolution of a metropolitan rail transport network: The case of Stockholm. Journal of Transport Geography, 62(June), 172-183. doi:10.1016/j.jtrangeo.2017.06.002
Cheng, Y.-Y., Roy, L., Lim, E.-p., & Zhu, F. (2015). Measuring centralities for transportation networks beyond structures. En P. Kazienko, & N. Chawla , Applications of Social Mediaand Social Network Analysis (págs. 23-39). New York: Springer. doi:DOI 10.1007/978-3-319-19003-7_2
Crucitti, P., Latora, V., & Porta, S. (2006). Centrality measures in spatial networks of urban streets. Physical Review E, 73(3), 1-4. doi:10.1103/PhysRevE.73.036125
de-la-Peña, J. (2012). Sistemas de Transporte en México: un análisis de centralidad en teoría de redes. Revista Internacional de Estadística y Geografía, 3(3), 72-91.
Derrible, S. (2012). Network Centrality of Metro Systems. PlosOne, 2012, 1-10. doi:10.1371/journal.pone.0040575
Derrible, S., & Kennedy, C. (2011). Applications of Graph Theory and Network Science to Transit Network Design. Transport Reviews, 31(4), 495-519. doi:10.1080/01441647.2010.543709
Fruchterman, T., & Reingold, E. (1991). Graph drawing by Force-directed Placement. Software—Practice and Experience, 21(11), 1129-1164.
Gephi.org. (2017). Gephi: The Open Graph Viz Platform. Obtenido de https://gephi.org/
Huang, L., Zhu, X., Ye, X., Guo, W., & Wang, J. (2015). Characterizing streethierarchies through networkanalysis and large-scale taxitraffic flow: a case studyof Wuhan, China. Environment and Planning B:Planning and Design, 43(2), 276-296. doi:10.1177/0265813515614456
Jian, D., Zhao, Y., & Lu, Q.-C. (2015). Vulnerability Analysis of Urban Rail Transit Networks: A Case Study of Shanghai, China. Sustainability, 7(6), 6919-6936. doi:doi:10.3390/su7066919
Lotero Vélez, L., & Hurtado Heredia, R. G. (2014). Vulnerabilidad de redes complejas y aplicaciones al transporte urbano: una revision a la literatura. EIA, 11(21), 67-78. doi:10.14508/reia.2014.11.21.67-78
Lotero, R. G. (2014). Vulnerabilidad de redes complejas y aplicaciones al transporte urbano: una revision a la literatura. Revista EIA, 11(21), 67-78. doi:10.14508/reia.2014.11.21.67-78
Newman, M. (2010). Networks: An Introduction. New York, USA: Oxford University Press.
Newman, M. (2010). Networks: An Introduction (1 ed.). New York, USA: Oxford University Press.
Rui, J., Ban, Y., Wang, J., & Haas, J. (2013). Exploring the patterns and evolution of self-organized urban street networks through modeling. The European Physical Journal E, 86(3), 86-74. doi:10.1140/epjb/e2012-30235-7
Saberi, M., Mahmassani, H., Brockmann, D., & Hosseini, A. (2016). A complex network perspective for characterizing urbantravel demand
patterns: graph theoretical analysisof large-scale origin–destination demand networks. Transportation, 44(6), 1383-1402. doi:10.1007/s11116-016-9706-6
Strano, E., Viana, M., da-Fontoura-Costa, L., Cardillo, A., Porta, S., & Latora, V. (2013). Urban street networks, a comparative analysis of ten European cities. Environment and Planning B: Planning and Design, 40, 1071-1086. doi:10.1068/b38216
Wang, H., Martin-Hernandez, J., & van Mieghem, P. (2008). Betweenness centrality in a weighted network. Physical Review E, 77, 1-10. doi:10.1103/PhysRevE.77.046105
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx