EXPERIMENTAL EVALUATION OF GALVANIZED AND ANNEALED WIRES TO PRODUCE HOOKED FIBERS AS REINFORCEMENT OF CONCRETE UNDER FLEXION (EVALUACIÓN EXPERIMENTAL DEL ALAMBRE GALVANIZADO Y RECOCIDO PARA PRODUCIR FIBRAS CON GANCHOS COMO REFUERZO DEL CONCRETO A FLEXIÓN)

Alejandro Meza de Luna, Laura Montserrat Meza López, Fernando Chávez Valdivia, Raúl Gerardo Medina Reyes, Alan Alexis Esparza López

Resumen


Abstract

The steel fiber reinforced concrete is a composite material used to build structural elements used commonly in Europe; but in Mexico, the scarce availability of commercial fibers has limited its application. The present paper discusses the feasibility of generating hooked end steel fibers from conventional materials used in the industry -as the galvanized wire and the annealed wire-. The production of the reinforced elements was made with a stamping process using a set of dice. The effects of the incorporation of galvanized and annealed fibers on the mechanical properties of the concrete matrix were experimentally investigated under three-point bending test. Parameters as the fiber materials and the fiber dosage were analyzed in the responses of the maximum load, the residual strength, and the number of fibers at the cracking section. The results showed that concrete samples reinforced with galvanized and annealed fibers have higher post-cracking behavior than conventional concrete, with a better performance of the concrete reinforced with galvanized fibers than those with annealed fibers.

Keywords: steel fiber reinforced concrete, composite material, galvanized and annealed wires, fiber reinforcement.

 

Resumen

El concreto reforzado con fibras es un material compuesto utilizado para la construcción de elementos estructurales comúnmente utilizado en Europa; pero en México, la escasa disponibilidad de fibras comerciales ha reducido su aplicación. El presente artículo discute la factibilidad de generar fibras de acero con ganchos a partir de materiales comerciales comúnmente empleados en la industria –como el alambre galvanizado y el alambre recocido-. La producción de elementos de refuerzo se realizó mediante un proceso de estampado con un juego de dados. El efecto de la incorporación de fibras galvanizadas y recocidas en las propiedades mecánicas de matrices de cemento fue investigado experimentalmente bajo el ensayo de tres puntos. Parámetros como los materiales y dosis de fibra fueron analizados en las respuestas de la máxima carga, la resistencia residual y la cantidad de fibras en zona de fractura. Los resultados muestran que las muestras de concreto reforzado con fibras de alambre galvanizado y alambre recocido tienen mejor comportamiento post-agrietamiento que el concreto convencional, con un mejor desempeño del concreto reforzado con fibras galvanizada que aquellas con fibras recocida.

Palabras Clave: concreto reforzado con fibras de acero, materiales compuestos, alambres galvanizado y recocido, fibras de refuerzo.


Texto completo:

475-486 PDF

Referencias


ACI. (1998). 544.3R Guide for Specifying, Proportioning, Mixing, Placing, and Finishing Steel Fiber Reinforced Concrete.

ACI. (2002). 211.1 Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete.

Arabani, M. & Pedram, M. (2016). Laboratory investigation of rutting and fatigue in glassphalt containing waste plastic bottles. Construction and building materials, 116, 378-383.

ASTM. (2000). C-192 Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory.

ASTM. (2000). C78 Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading).

ASTM. (2016). C0150/C150M-16e1 Standard Specification for Portland Cement.

Buratti, N., Mazzotti, C. & Savoia, M. (2011). Post-cracking behaviour of steel and macro-synthetic fibre-reinforced concretes. Construction and building materials, 25, 2713-2722.

Carmona, S., Molins, C., Aguado, A & Mora, F. (2016). Distribution of fibers in SFRC segments for tunnel linings. Tunnelling and Underground Space Technology, 51, 238-249.

DEACERO ®. (1 jun 2019 ). Technical sheet. https://deacero.com/ecd/CursosPDF/Ferreteros/Alambres,

Dramix ®. (1 jun 2019). Steel fiber concrete reinforcement for industrial floors, https://www.bekaert.com/en/products/construction/concrete-reinforcement/dramix-steel-fiber-concrete-reinforcement-for-industrial-floors

Emon, M.A.B., Manzur, T. & Sharif, M.S. (2017). Suitability of locally manufactured galvanized iron (GI) wire fiber as reinforcing fiber in brick chip concrete. Case Studies in Construccion Materials, 7, 217-227.

Gelfi, M., Solazzi, L. & Poli, S. (2017). Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires. Materials, 10(3), 264-276.

JSCE. (1984). SF4 Standard for flexural strength and flexural toughness, method of tests for steel fiber reinforced concrete. Concrete library of JSCE, Japan Concrete Institute (JCI).

Kaur, G., Singh, S.P. & Kaushik, S.K. (2016) Mean and design fatigue lives of SFRC containing cement-based materials. Magazine of concrete research, 68(7), 325-338.

Khaloo, A., Raisi, E.M., Hosseini, P. & Tahsiri H., (2014) Mechanical performance of self-compacting concrete reinforced with steel fibers. Construction and building materials, 51, 179-186.

Meddah, M.S. & Bencheikh M (2009) Properties of concrete reinforced with different kinds of industrial waste fibre materials. Construction and building materials, 23(10), 3196-3205.

Meza, A. & Siddique, S. (2019). Effect of aspect ratio and dosage on the flexural response of FRC with recycled fiber. Construction and Building Materials, 213, 286-291.

Meza, A. (2015). Optimización del concreto reforzado con fibras de acero y polipropileno en pisos industriales, basado en análisis experimental y numérico (doctoral thesis). Universidad Autónoma de Aguascalientes, Aguascalientes, Ags., México.

Meza, A., Ortiz, J.A., Peralta, L., Pacheco, J., Soto, J.J., Rangel, S.H., Padilla, R. & Alvarado, J. (2014). Experimental mechanical characterization of steel and polypropylene fiber reinforced concrete. Revista Tecnica Facultad de Ingeniería Universidad Zulia, 37(2), 106-115.

Nehdi, M.L., Mohamed, N. & Soliman, A.M. (2016) Investigation of buried full-scale SFRC pipes under live loads. Construction and building materials, 102, 733-742.

Poveda, E., Ruiz, G., Cifuentes, H., Yu, R. & Zhang, X. (2017) Influence of the fiber content on the compressive low-cycle fatigue behavior of self-compacting SFRC. International Journal of Fatigue, 101, 9-17.

Soutsos, M.N., Le, T. T. & Lampropoulos, A.P. (2012) Flexural performance of fibre reinforced concrete made with steel and synthetic fibres. Construction and Building Materials, 36, 704–710.

Yang, C.C. & Liu, C.L. (2016). Improvement of the Mechanical Properties of 1022 Carbon Steel Coil by Using the Taguchi Method to Optimize Spheroidized Annealed. Conditions. Materials, 9(8), 693-702.

Yoo, D.Y., Lee, J.H. & Yoon, Y.S. (2013). Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites. Composite structures, 106, 742-753.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas