ELIMINACIÓN ALGEBRAICA Y EL MÉTODO NEWTON-HOMOTOPÍA: DOS MÉTODOS EFICIENTES EN LA SOLUCIÓN DE ECUACIONES COMPUESTAS POR POLINOMIOS (ALGEBRAIC ELIMINATION AND THE NEWTON-HOMOTOPY METHOD: TWO EFFICIENT METHODS FOR SOLVING POLYNOMIAL EQUATIONS)

Jaime Gallardo Alvarado, Martín Caudillo Ramírez, Carlos Rafael Aguilar Nájera, Luciano Pérez González

Resumen


Resumen

En este trabajo se describen de manera simple y detallada dos métodos de solución de ecuaciones compuestas por polinomios que usualmente surgen en el análisis y síntesis de mecanismos: i) la eliminación dialítica de Sylvester, ii) el método de Newton-homotopía. Ambos métodos han sido aplicados de manera exitosa en diversos problemas en el área de robótica, especialmente en el análisis cinemático directo de manipuladores espaciales. Sin embargo, estudiantes de ingeniería experimentan ciertas dificultades en su aplicación en materias fundamentales como mecanismos dada la estructura de las materias de matemáticas correspondientes. Por tal motivo, el presenta trabajo está dedicado a aquellas personas que se inician en el tema. Los métodos matemáticos aquí expuestos se aplican en un caso de estudio. 

Palabras Clave: Cinemática, Eliminación dialítica, Newton-Raphson, Homotopía, Polinomio.

 

Abstract

In this paper we describe in a simple and detailed way two methods of solution of equations composed by polynomials that usually arise in the analysis and synthesis of mechanisms: i) the dialytic Sylvester method of elimination, ii) the Newton-homotopy method. Both methods have been applied successfully in diverse problems in the area of robotics, especially in the direct kinematics of spatial manipulators. However, undergraduate students undergo certain difficulties in their application in fundamental courses as mechanisms given the structure of the mathematics courses. For this motivation, the presented work is dedicated to those people who are initiated in the subject. The mathematical methods here treated are applied in a case study.

Keywords: Dyalitic elimination, Homotopy, Kinematics, Newton-Raphson, Polynomial equation.


Texto completo:

245-258 PDF

Referencias


Roth, B, Freudenstein, F. (1963) Synthesis of path-generating mechanisms by numerical methods. ASME Journal of Engineering for Industry. 85 (B3). Pp. 298-306.

Tsai, L.W., Morgan, A.P. (1985) Solving the kinematics of the most general six- and five-degree of freedom manipulators by continuation methods. ASME Journal of Mechanisms, Transmissions and Automations in Design. 107. Pp. 189-200.

Lee, H.-Y., Liang, C.-G. (1988) Displacement analysis of the general spatial 7-link 7R mechanism. Mechanism and Machine Theory. 23. Pp. 219-226.

Raghavan, M., Roth, B. (1989) Kinematic analysis of the 6R manipulator of general geometry. International Symposium on Robotics Research, MIT Press. Pp. 314-320.

Gough, V.E., Whitehall, S.G. (1962) Universal tyre test machine. (1962) Proceedings of the FISITA Ninth International Technical Congress. Pp. 117-137.

Stewart, D., (1965). A platform with six degrees of freedom. Proceedings Institution of Mechanical Engineers. 180. Pp. 371-386.

Raghavan, M. (1993) The Stewart platform of general geometry has 40 configurations. ASME Journal of Mechanical Design. 115. Pp. 277-282.

Wampler, C.W. (1996) Forward displacement analysis of general six-in-parallel SPS (Stewart) platform manipulators using soma coordinates. Mechanism and Machine Theory. 31. Pp. 331-337.

Innocenti, C. (2001) Forward kinematics in polynomial form of the general Stewart platform. ASME Journal of Mechanical Design. 123. Pp. 254-260.

Rolland, L. (2005) Certified solving of the forward kinematics problem with an exact algebraic method for the general parallel manipulator. Advanced Robotics. 19. Pp. 995-1025.

Wampler, C.W., Morgan, A.P., Sommese, A.J. (1990) Numerical continuation methods for solving polynomial systems arising in kinematics. ASME Journal of Mechanical Design. 112 (1). Pp. 59-68.

Sommese, A. J., Verschelde, J., Wampler, C.W. (2004) Advances in polynomial continuation for solving problems in kinematics. ASME Journal of Mechanical Design. 126 (2). Pp. 262-268.

Wu, T.-M. (2005) A study of convergence on the Newton-homotopy continuation method. Applied Mathematics and Computation. 168. Pp. 1169-1174.

Wu, T.-M. (2006) The inverse kinematics problem of spatial 4P3R robot manipulator by the homotopy continuation method with an adjustable auxiliary homotopy function. Nonlinear Analysis. 64. Pp. 2373-2380.

Gallardo-Alvarado, J. (2019) An Application of the Newton-homotopy continuation method for solving the forward kinematic problem of the 3-RRS parallel manipulator. Mathematical Problems in Engineering. Artículo 3123808, 6 páginas.

Cayley, A. (1848) on the theory of elimination. Cambridge Dublin Mathematics Journal. 3.

Gallardo-Alvarado, J., Rodríguez-Castro, R., Islam, M.N. (2008) Analytical solution of the forward position analysis of parallel manipulators that generate 3-RS structures. Advanced Robotics. 22. Pp. 215-234.

Masouleh, M.T., Gosselin, C., Saadatzi, M.H., Kong, X., Taghirad, H.D. (2011a) Kinematic analysis of 5–RPUR (3T2R) parallel mechanisms. Meccanica. 46. Pp. 131–146.

Masouleh, M.T., Gosselin, C., Husty, M., Walter, D.R. (2011b). Forward kinematic problem of 5–RPUR parallel mechanisms (3T2R) with identical limb structures. Mechanism and Machine Theory. 46. Pp. 945-959.

Gallardo-Alvarado, J., Abedinnasab, M.H., Islam, Md.N. (2019) A simple method to solve the instantaneous kinematics of the 5-RPUR parallel Manipulator. Robotica. 37. Pp. 1143-1157.

Shigley, J.E. (1970) Análisis Cinemático de Mecanismos. McGraw-Hill.

Erdman, A.G., Sandor, G.N., Kota, S. (2001) Mechanism Design: Analysis and Synthesis. Vol. 1, 4ta. Edicion. Prentice Hall.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas