MODELO BASADO EN REDES NEURONALES RECURRENTES LSTM PARA LA PREDICCIÓN DE LA SIGUIENTE ACTIVIDAD EN PROCESOS DE NEGOCIO (LSTM RECURRENT NEURAL NETWORK BASED-MODEL FOR THE PREDICTION OF THE NEXT ACTIVITY IN BUSINESS PROCESSES)

Ulises Manuel Ramírez Alcocer, Edgar Tello-Leal, Ana Bertha Ríos Alvarado

Resumen


Las redes neuronales recurrentes de tipo Memoria a Corto y Largo Plazo (LSTM) proporcionan una alta precisión en la predicción del modelado de secuencias en varios dominios de aplicación. En este artículo se introduce el uso de redes LSTM para la predicción de actividades de un proceso de negocio, etapa importante dentro del descubrimiento de procesos de negocio en la minería de procesos. Se propone una metodología para la implementación de la red LSTM en el dominio de minería de procesos. La red neuronal LSTM es entrenada con diferentes registros de eventos para comparar su tasa de exactitud, los registros de eventos presentan diferente cantidad de trazas, número de casos y total de actividades. La tasa de exactitud obtenida en el entrenamiento de la red neuronal es aceptable de acuerdo a la literatura del dominio, así como la validación de la precisión en la predicción de la siguiente actividad.

The Long Short-Term Memory (LSTM) Recurrent Neural Networks provide a high precision in the prediction of the modeling of sequences in several application domains. This article introduces the use of LSTM networks for the prediction of activities in a business process, an important step in the discovery of business processes in process mining. A methodology for the implementation of the LSTM network in the process mining domain is proposed. The LSTM neural network is trained with different event logs to compare its accuracy rate, the event logs contain a different number of traces, number of cases and total activities. The accuracy rate obtained in the training of the neural network is acceptable according to the literature of the domain, as well as the validation precision in the prediction of the next activity.


Texto completo:

962-974 PDF

Referencias


Baier, T., Mendling, J., Weske, M. Bridging abstraction layers in process mining. Information Systems, 46(6), 123-139, 2014.

Chollet, F. Keras. https://github.com/fchollet/keras, 2015.

Cortez, B., Carrera, B., Kim, Y. J., Jung, J. Y. An architecture for emergency event prediction using LSTM recurrent neural networks. Expert Systems with Applications, 97, 315-324, 2018.

Evermann, J., Rehse, J. R., Fettke, P. Predicting process behaviour using deep learning. Decision Support Systems, 100, 129-140, 2017.

Gottschalk, F., van der Aalst, W., Jansen-Vullers, M. Merging event-driven process chains. In Meersman, R., Tari, Z., eds. On the Move to Meaningful Internet Systems: OTM 2008. Springer Berlin Heidelberg, 418-426, 2008.

Hochreiter, S., Schmidhuber, J. Long Short-Term Memory. Neural Computation, 9(8), 1735-1780, 1997.

Liu, F., Chen, Z., Wang, J. Video image target monitoring based on RNN-LSTM. Multimedia Tools and Applications, 1-18, 2018.

Jensen, K., Kristensen, L.M. Coloured Petri Nets: Modelling and Validation of Concurrent Systems. Springer-Verlag Berlin Heidelberg, Berlin, Germany. 2009.

Object Management Group. Business process model and notation version 2.0. Specification formal/2011-01-03, Object Management Group, 2011.

Sak, H., Senior, A., Beaufays, F. Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In Fifteenth Annual Conference of the International Speech Communication Association, 2014.

Tax, N., Verenich, I., La Rosa, M., Dumas, M. Predictive Business Process Monitoring with LSTM Neural Networks. In Advanced Information Systems Engineering, Dubois, E., Pohl, K., eds., Springer, 477-492, 2017.

Tello-Leal, E., Chiotti, O., Villarreal, P.D. Software agent architecture for managing inter-organizational collaborations. Journal of Applied Research and Technology, 12(3), 513-526, 2014.

van der Aalst, W., Adriansyah, A., de Medeiros, A.K.A., et al. Process mining manifesto. In Daniel, F., Barkaoui, K., Dustdar, S., eds. Business Process Management Workshops. Springer Berlin Heidelberg, 169-194, 2012.

van der Aalst, W. Process Mining: Data Science in Action, 2nd edn. Springer. New York, USA. 2016.

Wei, X., Wen Z., Bo L., Min C., Lijun C., Lei H. Novel architecture for long short-term memory used in question classification. Neurocomputing, 299, 20-31, 2018.

Weske, M. Business Process Management: Concepts, Languages, Architectures, 2nd edn. Springer, Berlin, Germany. 2012.

YiFei, L., Han C. Prediction for Tourism Flow based on LSTM Neural Network. Procedia Computer Science, 129, 277-283, 2018.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas