ARQUITECTURA DE CONTROL CONDUCTUAL PARA AGENTES INTELIGENTES (ARCHITECTURE OF BEHAVIORAL CONTROL FOR INTELLIGENT AGENTS)

Joel Ricardo Jiménez Cruz

Resumen


En este trabajo se simula, por medio del lenguaje de programación NetLogo, el comportamiento adaptativo de un agente inteligente ante su medio ambiente. El comportamiento está regido por una arquitectura de control conductual de inspiración biológica que se implementa a partir de máquinas de estado. Con este tipo de arquitectura, se aborda la problemática de que el agente elija la respuesta conductual más apropiada en función de las circunstancias de su entorno y de la estimulación recibida. Se reporta y compara el funcionamiento del agente a partir de dos experimentos que utilizan 5 escenarios y 4 controladores. Las simulaciones de este comportamiento inteligente se pueden implementar en robots móviles autónomos, en agentes asistentes o tutores, o en aquellos agentes que buscan y recuperan información en bases de datos o en Internet (softbots).

This work simulates, through the NetLogo programming language, the adaptive behavior of an intelligent agent in its environment. The behavior is governed by a behavioral control architecture of biological inspiration that is implemented from state machines. With this type of architecture, the problem addressed is that the agent chooses the most appropriate behavioral response depending on the circumstances of its environment and the stimulation received. The performance of the agent is reported and compared from two experiments using 5 scenarios and 4 controllers. The simulations of this intelligent behavior can be implemented in autonomous mobile robots, assistant agents or tutors, or in those agents that search and retrieve information in databases or the Internet (softbots).


Texto completo:

675-694 PDF

Referencias


Atkinson, J. (1998). Diseño de Agentes Autónomos Utilizando un Enfoque de Control Basado en Conductas. Revista Facultad de Ingeniería, núm. 5, pp. 45-54. http://www.redalyc.org/pdf/114/11400507.pdf

Beer, R., Chiel, J., Sterling, L. (1991). An artificial insect. American Scientist, Vol. 79(5): pp. 444-452. http://www.jstor.org/stable/29774478?seq=1#page_scan_tab_contents

Ben-Ari M., Mondada F. (2018a). Reactive Behavior. In: Elements of Robotics. Springer, Cham, pp. 39-53. https://link.springer.com/chapter/10.1007/978-3-319-62533-1_3

Ben-Ari M., Mondada F. (2018b). Finite State Machines. In: Elements of Robotics. Springer, Cham, pp. 55-61. https://link.springer.com/chapter/10.1007/978-3-319-62533-1_4

Berns G.S., Sejnowski T.J. (1996). How the Basal Ganglia Make Decisions. The Neurobiology of Decision Making, Eds. Damasio A., Damasio H., ChristenY.,Springer-Verlag. https://papers.cnl.salk.edu/PDFs/How%20the%20Basal%20Ganglia%20Make%20Decisions%201996-2876.pdf

Biro, A. (2018). Combining adjustable autonomy and shared control as a new platform for controlling robotic systems with ROS on TurtleBot. Örebro University Report. Independent thesis Advanced level. http://www.diva-portal.org/smash/get/diva2:1178533/FULLTEXT01.pdf

Brooks, R. (1986). Robust layered control system for a mobile robot, IEEE J. Robotics and Automation, RA-2, pp. 14-23. https://ieeexplore.ieee.org/document/1087032/

Brooks, R. (1991). Intelligence Without Reason. A.I. Memo No. 1293. MIT. http://people.csail.mit.edu/brooks/papers/AIM-1293.pdf

Caballero, H. (1998). Diseño e Implementación de una Sociedad de Agentes Inteligentes Recolectores de Información. Tesis de Ingeniero en Computación. Universidad Tecnológica de la Mixteca. http://jupiter.utm.mx/~tesis_dig/5152.pdf

Cadavid H., Pérez A., Rocha C. (2017). Reliable Control Architecture with PLEXIL and ROS for Autonomous Wheeled Robots. In: Solano A., Ordoñez H. (eds) Advances in Computing. CCC 2017. Communications in Computer and Information Science, vol 735. Springer, Cham. https://www.researchgate.net/publication/319138847_Reliable_Control_Architecture_with_PLEXIL_and_ROS_for_Autonomous_Wheeled_Robots

Cao, H-L., Van De Perre, G., Kennedy, J., Senft, E., Gomez Esteban, P., De Beir, A., ... Vanderborght, B. (2018). A personalized and platform-independent behavior control system for social robots in therapy: development and applications. IEEE Transactions on Cognitive and Developmental Systems, PP(99), 1-13. DOI: 10.1109/TCDS.2018.2795343. https://ieeexplore.ieee.org/document/8263227/

Feng, Y., Jia, Q., Wei, W. (2018). A Control Architecture of Robot-Assisted Intervention for Children with Autism Spectrum Disorders. Journal of Robotics, vol. 2018, Article ID 3246708, 12 pages. https://doi.org/10.1155/2018/3246708. https://www.hindawi.com/journals/jr/2018/3246708/

Gaudla, S., Bryson, J. (2018). The extended ramp model: A biomimetic model of behaviour arbitration for lightweight cognitive architectures. Cognitive Systems Research, Volume 50, Pages 1-9. https://doi.org/10.1016/j.cogsys.2018.02.001

González, A. Alves, M., Viana, G., Carvalho, L., Basilio, J. (2018). Supervisory Control-Based Navigation Architecture: A New Framework for Autonomous Robots in Industry 4.0 Environments. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14 (4): 1732-1743.

Grillner S. Georgopoulos A., Jordan L. (1997). Selection and Initiation of Motor Behavior. En Neurons, Networks and Motor Behavior, eds. Stein P., Grillner S., Selverton A., Stuart D. The MIT Press.

Herrero, I., Urdiales, C., Peula, J, Sandoval, F. (2017). CBR based reactive behavior learning for the memory-prediction framework. Neurocomputing. Volume 250, Pages 18-27. https://doi.org/10.1016/j.neucom.2016.10.075

Hogg, D.W., Martin, F., Resnick, M. (1991). Braitenberg creatures. Technical report E&L Memo No. 13, MIT Media Lab. http://cosmo.nyu.edu/hogg/lego/braitenberg_vehicles.pdf

Jiménez J, Espinosa I. (2000). Arquitecturas de selección de acción inspiradas en el sistema nervioso de los vertebrados. Memorias del II simposio internacional en tecnologías inteligentes. ISIT 2000, Apizaco, Tlaxcala. http://sgpwe.izt.uam.mx/files/users/uami/jcjr/ArqSelapizaco00.pdf

Jiménez, J. (2018). Simulación de estrategias de búsqueda en animales con posibles aplicaciones en computación y robótica. Pistas Educativas, Vol. 39, Núm. 128, pp. 829-847. http://www.itcelaya.edu.mx/ojs/index.php/pistas/article/view/1168/984

Jiménez C., Johnson, J. (2017). SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo. Neural Computing and Applications. Volume 28, Supplement 1, pp 755–764. doi: 10.1007/s00521-016-2398-1. https://www.researchgate.net/publication/303846142_SpikingLab_modelling_agents_controlled_by_Spiking_Neural_Networks_in_Netlogo

Jones, J., Flynn, A. (1993). Chapter 9, Robot Programming (Subsumption architecture) in Mobile Robots, A. K. Peters, Ltd.

Lazzeri, N., Mazzei, D., Cominelli, L., Cisternino, A., De Rossi, D. (2018). Designing the Mind of a Social Robot. Applied Sciences. Tomo 8, N.º 2: 302. DOI:10.3390/app8020302

Lee, G. y Chwa, D. (2018). Decentralized behavior-based formation control of multiple robots considering obstacle avoidance. Intelligent Service Robotics, Volume 11, Issue 1, pp 127–138.

Lorenz, K. (1986). Biología del Comportamiento - Evolución y modificación de la conducta. Siglo XXI Editores, México D.F., México.

Mataric, M. (2007). The Robotics Primer. MIT Press. http://neuron.tuke.sk/sabolpatrik/students/humanoids16/Cvicenia/RoboticsPrimer.PDF

Melidis, C., Iizuka, H. & Marocco, D. (2018). Intuitive control of mobile robots: an architecture for autonomous adaptive dynamic behaviour integration. Cognitive Processing 19(2): 245-264. doi: 10.1007/s10339-017-0818-5. https://www.ncbi.nlm.nih.gov/pubmed/28585090

Muñoz, P., Moreno, M., Barrero, D., Ropero, F. (2018). MoBAr: a Hierarchical Action-Oriented Autonomous Control Architecture. Journal of Intelligent & Robotic Systems. pp 1–16. https://doi.org/10.1007/s10846-018-0810-z

Prescott T., Redgrave P., Gurney K. (1999). Layered Control Architectures in robots and Vertebrates, Adaptive Behavior, Vol 7, pp. 99-127. http://eprints.whiterose.ac.uk/107032/1/Prescott%20Adaptive%20Behavior%201999%20preprint.pdf

Raglin, A., Metu, S., Howard, C. (2018). Understanding theoretical human information interaction, the development of a standard model using an agent based modeling framework, Proc. SPIE 10653, Next-Generation Analyst VI, 1065302; doi: 10.1117/12.2304533; https://doi.org/10.1117/12.2304533

Rodríguez, F., Matellán, V., Conde, M., Martín F. (2018). HiMoP: A three-component architecture to create more human-acceptable social-assistive robots. Cognitive Processing, 19 (2): 233-244. https://doi.org/10.1007/s10339-017-0850-5

Sakellariou, I., Kefalas, P., Tamatopoulou, I. (2008). Teaching Intelligent Agents using NetLogo. Proceedings of the ACM-IFIP IEEIII 2008 Informatics Education Europe III Conference, Venice, Italy. https://pdfs.semanticscholar.org/0d6f/2b8bc1015dda90e0d68939e388e43359d155.pdf

Tisue, S., Wilensky, U. (2004). NetLogo: Design and implementation of a multi-agent modeling environment. Proceedings ofAgent. https://ccl.northwestern.edu/papers/2013/netlogo-agent2004c.pdf

Tzafestas, S. (2018). Mobile Robot Control and Navigation: A Global Overview. Journal of Intelligent & Robotic Systems. Volume 91, Issue 1, pp 35–58. https://doi.org/10.1007/s10846-018-0805-9

Vanderelst, D., Winfield, A. (2018). An architecture for ethical robots inspired by the simulation theory of cognition. Cognitive Systems Research. Volume 48, Pages 56-66. https://doi.org/10.1016/j.cogsys.2017.04.002

Walter, G. (1950). An imitation of life. Scientific American 182(5): 42-45. http://robotics.cs.tamu.edu/dshell/cs643/papers/walter50imitation.pdf

Walter, G. (1951). A machine that learns. Scientific American 185(2): 60-63. http://robotics.cs.tamu.edu/dshell/cs643/papers/walter51learns.pdf

Zaharija, G., Grubač, A., Granić, A. (2014). LEaRN–LEgo Robot and Netlogo. Proceedings of CIET 2014, pp. 209-218. University of Split. https://www.researchgate.net/publication/273086230_LEaRN_-_LEgo_Robot_and_Netlogo






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas