SISTEMA FOTOVOLTAICO PARA EXTENDER EL TIEMPO DE OPERACIÓN DE UNA AERONAVE NO TRIPULADA (PHOTOVOLTAIC SYSTEM TO EXTEND THE OPERATION TIME OF AN UNMANNED AIRCRAFT)
Resumen
En este trabajo se realiza un estudio de factibilidad para integrar un sistema fotovoltaico a una aeronave no tripulada con la finalidad de extender el tiempo de operación. El sistema se diseñó con un arreglo en serie de celdas fotovoltaicas flexibles, el cual incluye un convertidor DC-DC para adaptar el voltaje de salida al voltaje de operación de la aeronave. La energía eléctrica generada por el sistema fotovoltaico operó satisfactoriamente en conjunto con la batería de la aeronave; suministrando la potencia necesaria para mantener un vuelo nivelado. Se desarrolló un sistema de medición basado en Arduino y sensores de voltaje y corriente para monitorear el consumo de potencia de la aeronave, la potencia generada por el sistema fotovoltaico y el tiempo máximo de operación de la aeronave.
In this work, is carried out a study to integrate a photovoltaic system into an unmanned aircraft in order to extend the flight time. The system was designed with a series arrangement of flexible photovoltaic cells, which includes a DC-DC converter to adapt the output voltage to the operating voltage of the aircraft. The electrical energy generated by the photovoltaic system operated satisfactorily in conjunction with the aircraft's battery; providing the necessary power that keeps the aircraft in level flight. A measurement system based on Arduino and sensors of voltage and current was developed to monitor the power consumption of the aircraft, the power generated by the photovoltaic system and the maximum operating time of the aircraft.
Texto completo:
411-426 PDFReferencias
Breeze, P. (2014). Power generation technologies. Newnes.
D’Sa, R., Jenson, D., Henderson, T., Kilian, J., Schulz, B., Calvert, M., Heller, T., & 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (octubre 01, 2016). SUAV:Q - An improved design for a transformable solar-powered UAV. 1609-1615.
García, C. L. R., Dzul, L. A. E., Lozano, R., & Pégard, C. (2013). Quad Rotorcraft Control: Vision-Based Hovering and Navigation. London: Springer.
Gudmundsson, S. (2014). General Aviation Aircraft Design: Applied Methods and Procedures. Oxford, UK: Butterworth-Heinemann.
Hughes, A., & Drury, B. (2013). Electric motors and drives: Fundamentals, types and applications. Amsterdam: Elsevier.
Keane, J. (2014). Pico-solar electric systems: The Earthscan expert guide to the technology and emerging market. Oxfordshire, England: Routledge.
Khartchenko, N. V., & Kharchenko, V. M. (2013). Advanced energy systems. CRC Press.
Kundu, A. K. (2014). Aircraft design. Cambridge: Cambridge University Press.
Luque, A., & Hegedus, S. (2011). Handbook of photovoltaic science and engineering Chichester, West Sussex, U.K: Wiley.
Mateus, M., Camilo, B., Pulecio Gómez, A. F., & Ruíz Arenas, S. (2017). Diseño y construcción de un vehículo aéreo no tripulado tipo planeador de ala recta, con paneles solares (Bachelor’s thesis, Universidad Militar Nueva Granada).
Morton, S., D’Sa, R., Papanikolopoulos, N., & 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (septiembre 01, 2015). Solar powered UAV: Design and experiments. 2460-2466.
Park, H. B., Lee, J. S., Yu, K. H., & 2015 54th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE). (julio 01, 2015). Experiment and evaluation of solar powered UAV by virtual flight system. 1052-1057.
Perlin, J. (2002). From space to earth: The story of solar electricity. Cambridge, Mass: Harvard University Press.
Quan, Q. (2017). Introduction to multicopter design and control. Singapore: Springer.
Rajendran, P., & Smith, H. (enero 01, 2014). The Development of a Small Solar Powered Electric Unmanned Aerial Vehicle Systems. Applied Mechanics and Materials, 345-351.
Sai, L., Wei, Z., & Xueren, W. (marzo 01, 2017). The Development Status and Key Technologies of Solar Powered Unmanned Air Vehicle. Iop Conference Series: Materials Science and Engineering, 187, 12011.
Scarpino, M. (2015). Motors for Makers: A Guide to Steppers, Servos, and Other Electrical Machines. Que Publishing.
Stapleton, G., & Neill, S. (2012). Grid-connected solar electric systems: the earthscan expert handbook for planning, design and installation. Routledge.
White, S. (2015). Solar photovoltaic basics: A study guide for the NABCEP entry level exam. Oxfordshire, England: Routledge.
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx