ESTRATEGÍA DE CONTROL MEDIANTE FUNCIÓN DE LYAPUNOV PARA CONVERTIDORES MONOFÁSICOS CD/CA EN SISTEMAS FOTOVILTAICOS (CONTROL STRATEGY BY LYAPUNOV FUNCTION FOR SINGLE-PHASE CD/CA CONVERTERS IN PHOTOVOLTAIC SYSTEMS)
Resumen
Resumen
Los convertidores CD/CA se utilizan ampliamente en sistemas de generación fotovoltaica conectados a la red. Normalmente se utilizan sólo para inyectar potencia activa a la red, sin embargo, es posible integrar la función del filtro activo de potencia al mismo sistema, y entonces es posible eliminar los armónicos de corriente generados por cargas no lineales. El convertidor CD/CA tendrá esta capacidad de eliminar las corrientes armónicas mientras también inyecta potencia activa en la red, debido a la energía generada por los paneles solares. Este documento presenta una estrategia de control basada en una función de Lyapunov para un convertidor CD/CA monofásico para sistemas fotovoltaicas que considera la compensación armónica. Se presenta el análisis, diseño y los resultados de simulación.
Palabras Clave: Control por función Lyapunov, Filtro Activo de Potencia, Fotovoltaico, Fuente Renovable.
Abstract
The DC/AC Converters are being widely used in grid-connected photovoltaic generation systems. Usually they are used only to inject active power to the grid, however, it is possible to integrate the function of the active power filter to the same system, and then to eliminate the current harmonics generated by non-linear loads. So that the DC/AC converter will have the capacity to eliminate the harmonic currents generated by the nonlinear load while it is able to inject active power into the grid generated by the photovoltaic systems. This paper presents a control strategy based on Lyapunov-function for a single-phase DC/AC converter for photovoltaic systems that considers the harmonic compensation. The analysis, design, and simulations results are presented.
Keywords: Active Power Filter, Lyapunov-Function Control, Photovoltaic, Renewable Source.
Texto completo:
173-191 PDFReferencias
M. G. Villalva, J. R. Gazoli, and E. R. Filho, Comprehensive approach to modeling and simulation of photovoltaic arrays IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1198 – 1208, May 2009.
Z. Chen, J. M. Guerrero, and F. Blaabjerg, A review of the state of the art of power electronics for wind turbines, IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1859 – 1875, Aug. 2009.
Renewable Energy Policy Network for the 21st Century. 2017 Global status Report 2017. From: http://www.ren21.net/status-of-renewables/global-status-report/
L. Jun-Young and C. Hyung-Jun, 6.6 kW onboard charger design using DCM PFC converter with harmonic modulation technique and two-stage DC/DC converter, IEEE Trans. Ind. Electron, vol. 61, no. 3, pp. 1243 – 1252, Mar. 2014.
S. Kouro, J. I. Leon, D. Vinnikov, and L. G. Franquelo, Grid-connected photovoltaic systems: An overview of recent research and emerging PV converter technology, IEEE Ind. Electron. Mag., vol. 9, no. 1, pp. 47 – 61, Mar. 2015.
X. Wei, Study on digital pi control of current loop in active power filter, in Proc. 2010 Int. Conf. Electr. Control Eng., Jun. 2010, pp. 4287 – 4290.
J. Rodriguez, J. Pontt, C. Silva, P. Correa, P. Lezana, P. Cortes, and U. Amman, Predictive current control of a voltage source inverter, IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 495 – 503, Feb. 2007.
P. Acuña, L. Morán, M. Rivera, J. Dixon, and J. Rodriguez Improved active power filter performance for renewable power generation systems, IEEE Trans. Power Electron., vol. 29, no. 2, pp. 687 – 694, Feb. 2014.
Z. Zhang, N. Yao, C. Wang, L. Kang, L. Kang, A passivity-based control method for the single-phase three-level inverter, Electrical Machines and Systems (ICEMS), 2015 18th International Conference on, pp. 1515 – 1518, 25-28 Oct. 2015.
D. Noriega, G. Espinosa, V. Cardenas, H. Miranda, On the passivity-based control for multilevel inverters International Power Electronics Congress, 10th IEEE, 16 – 18 Oct. 2006.
H. Komurcugil, Improved passivity-based control method and its robustness analysis for single-phase uninterruptible power supply inverters IET Power Electronics, vol. 8, iss. 8, pp. 1558 – 1570, Jul. 2015.
Di Piazza; Vitale. Statitc Model. Photovoltaic Sources Modeling and Emulation. Ed. Springer. pp. 56 – 67. 2013.
S. K. Dash, D. Verma, S. Nema, R. K. Nema, Comparative analysis of maximum power point (MPP) tracking techniques for solar PV application using MATLAB simulink, Recent Advances and Innovations in Engineering (ICRAIE), 2014, pp.1 – 7, 9 – 11 May. 2014.
A. Morales – Acevedo, J. L. Diaz – Bernabe, R. Garrido – Moctezuma, Improved MPPT adaptive incremental conductance algorithm, Industrial Electronics Society, IECON 2014 – 40th Annual Conference of the IEEE, pp. 5540 – 5545, Oct. 29 2014 – Nov. 1 2014.
R. B. Roy, E. Basher, R. Yasmin, Md. Rokonuzzaman, Fuzzy logic based MPPT approach in a grid connected photovoltaic system, Software, Knowledge, Information Management and Applications (SKIMA), 2014 8th International Conference on, pp. 1 – 6, 18 – 20 Dec. 2014.
S. R. Sanders, and G. C. Verghese, Lyapunov-based control for switched power converters, IEEE Trans. Power Electron., vol. 7, no. 1, pp. 17 – 24, Jan. 1992.
H. Komurcugil, N. Altin, S. Ozdemir, and I. Sefa, An extended Lyapunov-function based control strategy for single-phase UPS inverters, IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3976 – 3983, Jul. 2015.
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx