REDUCCIÓN DEL TIEMPO DE CICLO EN UN MOLDE DE INYECCIÓN DE PLÁSTICOS IMPLEMENTANDO SISTEMAS DE ENFRIAMIENTO CON SECCIÓN TRANSVERSAL CIRCULAR Y RECTANGULAR (CYCLE TIME REDUCTION IN A PLASTIC INJECTION MOLD BY IMPLEMENTING COOLING SYSTEMS WITH CIRCULAR AND RECTANGULAR CROSS SECTION)

Jonathan Salvador López López, Jesús Enrique Ramírez Morales, Francisco Javier Cervantes Vallejo, Karla Camarillo Gómez, José Francisco Louvier Hernández, Carolina Hernández Navarro

Resumen


El presente artículo muestra la importancia del diseño de los canales de enfriamiento del molde para obtener una reducción en el tiempo total del ciclo de inyección, mediante una comparación entre cuatro tipos diferentes de sistemas de enfriamiento. Dos con sección transversal circular, uno con canal recto (tipo I), y el otro canal sigue la trayectoria de la pieza moldeada (tipo II). En los dos restantes se propone un cambio en la sección transversal, uno con sección cuadrada y otro con sección rectangular, en ambos la distancia es la misma entre los canales de enfriamiento y la superficie de la cavidad del molde. La pieza moldeada presenta una geometría con curvaturas suaves para tener un cierto grado de complejidad. Los resultados muestran que el diseño del canal circular tipo II, reduce el tiempo de ciclo, presenta flujo de calor uniforme y la pieza inyectada presenta contracción volumétrica uniforme.

Palabra(s) Clave(s): Canales,  Conductividad, Inyección, Molde, Tiempo.

 

Abstract

The importance of the design of cooling channels to obtain a good quality in the molded part with a reduced cycle time is presented in this work by comparing among 4 types of cooling channels. Two of them with circular cross-section, one of these with straight channels (type I), and the other with the channels that follows the path of the molded part (type II). The last two have square and rectangular cross section each one, both with the same distance between the cooling channels and the surface of the mold cavity. The mold presents a geometry with smooth curvatures to introduce some complexity. The results show that the type II circular channel design, reduces the cycle time, have a uniform heat flow and the injected part presents uniform volumetric contraction.

Keyboards: Channels, Conductivity, Injection, Mold, Time.


Texto completo:

1743-1757 PDF

Referencias


Candal, Pelliccioni, M. Bermeo, & Müller-Karger, C. (2013). Comparative analysis of materials during design process of prosthetic foot by using plastic injection molding simulation FE tool. Pan American Health Care Exchanges (PAHCE), 11 (6), pp. 879-890.

Dimla, D. C. (2005). Design and optimisation of conformal cooling channels in injection moulding tools. Journal of Materials Processing Technology, 1294-1300.

Fauzun, Hamdi, Tontowi, & Ariga. (2008). Formulation of the size and position of spiral cooling channel in plastic injection mold based on Fluent simulation results. IEEE International Conference on Industrial Engineering and Engineering Management, pp.1728-1733.

Himasekhar KK, Lottey JJ, & KK., W. (1992). CAE of Mold Cooling in Injection Molding Using a Three-Dimensional Numerical Simulation. ASME, 213-221.

Li, C. (2006). Part segmentation by superquadric fitting-a new approach towards automatic design of cooling system for plastic injection mould. The International Journal of Advanced Manufacturing Technology, 35(1-2), pp.102-114.

Lin, Z. a. (2002). Design of the cooling channels in nonrectangular plastic flat injection mold. Journal of Manufacturing Systems, pp.167-186.

Park, & Kwon. (1998). Optimal cooling system design for the injection molding process. Polymer Engineering & Science, pp.1450-1462.

Park, H., & Dang, X. (2010). Optimization of conformal cooling channels with array of baffles for plastic injection mold. International Journal of Precision Engineering and Manufacturing, 11(6), pp.879-890.

Rao, N. (2004). Design formulas for plastics engineers (Vol. 2nd ed). Munich: Hanser Verlag.

Rao, N. S. (2002). Optimization of Cooling Systems in Injection Molds by an Easily Applicable Analytical Model. Journal of Reinforced Plastics and Composites, pp.451-459.

Santhosh, & Babu. (2013). Design and wrapage analysis of plastic injection mould. National Conference on Challenges in Research & Technology in the Coming Decades (CRT 2013), pp. 1-5.

Zhou, H. a. (2005). Mold cooling simulation of the pressing process in TV panel production. Simulation Modelling Practice and Theory, pp.273-285.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas