MODELO DE ESPACIO–ESTADO DE UNA CELDA ALCALINA ELECTROLÍTICA PRODUCTORA DE HIDRÓGENO (STATE–SPACE MODEL OF AN ALKALINE ELECTROLYTIC CELL HYDROGEN PRODUCER)

Víctor Manuel Sámano Ortega, Nicolás Guerrero Chávez, José Martín Medina Flores, José Alberto Zavala Bustos, Arnoldo Maeda Sánchez

Resumen


En base a un estudio de los modelos existentes, se desarrolló en el presente artículo una propuesta de modelo de espacio – estado para una celda alcalina productora de hidrógeno. Para la constitución del modelo se consideró una celda bipolar de domo, tomando como variables de estado la presión y temperatura del sistema y como entrada la corriente de alimentación; consiguiendo con esto un modelo SISO no lineal, susceptible de ser analizado con la teoría de control moderno. El modelo se simuló con la herramienta Simulink de Matlab mostrando correspondencia con las respuestas del sistema presentadas en la bibliografía.

Palabra(s) Clave: Electrolizador alcalino, Hidrogeno, Modelo de espacio-estado.

 

Abstract

Based on existing models’ study, a State-Space model proposal for a hydrogen-producing alkaline cell was developed in this paper. For the model constitution a bipolar dome cell was considered, taking system pressure and temperature as state variables and the power current as input, getting whit this a nonlinear SISO model susceptible to be analyzed whit modern control theory. The model was simulated whit Simulink, Matlab’s tool, showing correspondence whit system responses presented on the bibliography.

Keywords: Alkaline electrolyzer, Hydrogen, State – Space model.


Texto completo:

1916-1937 PDF

Referencias


da Silva, T. Simonato, T. Messeder, D. da Silva, A. (2016). Hydrogen: Trends, production and characterization of the main process worldwide. International Journal of Hydrogen Energy, XXX, 1-16.

López, A. Meléndez, M. Collins, V. (2016). Hydrogen production research in Mexico: A review. International Journal of Hydrogen Energy, 41, 23363 – 23379.

Ursúa, A. Gandía, L. Sanchis, P. (2012). Hydrogen Production from Water Electrolysis: Current Status and Future Trends. Proceedings of the IEEE, vol. 100, no. 2, 410-426.

Zeng, k. Zhang, D. (2010). Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science, 36, 307-326.

Schalenbach, M. Zeradjanin, A. Kasian, O. Cherevko, S. Mayrhofer, K. A Perspective on Low-Temperature Water Electrolysis Challenges in Alkaline and Acidic Technology. (2018). International Journal Electrochemical Science, 13, 1173-1226.

Olivier, P. Bourasseau, C. Bouamama, B. (2016). Modelling, simulation and analysis of a PEM electrolysis system. IFAC – PapersOnLine, 49-12, 1014-1019.

Hammoudi, M. Henao, C. Agbossou, K. Dubé, Y. Doumbia, M. (2012). New multi – physics approach modelling and design of alkaline electrolyzers. International Journal of Hydrogen Energy, 37, 13895 – 13913.

Gorgun, H. (2006). Dynamic modelling of a proton exchange membrane (PEM) electrolyzer. International Journal of Hydrogen Energy, 31, 29 – 38.

Diéguez, P. Ursúa, A. Sanchis, P. Sopena, C. Guelbenzu, E. Gandía L. (2008). Thermal performance of a commercial alkaline water electrolyzer: Experimental study and mathematical modeling. International Journal of Hydrogen Energy, 33, 7338 – 7354.

Zhou, T. Francois, B. (2009). Modeling and control design of hydrogen production process for an active hydrogen/wind hybrid power system. International Journal of Hydrogen Energy, 34, 21 – 30.

Lebbal, M. Lecceuche, S. (2009). Identification and monitoring of a PEM electrolyser based on dynamical modelling. International Journal of Hydrogen Energy, 34, 5992 – 5999.

Awasthi, A. Scott, K. Basu, S. (2011). Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production. International Journal of Hydrogen Energy, 36, 14779 – 14786.

García, R. Espinoza, N. Urbina, A. (2012). Simple PEM water electrolyser model and experimental validation. International Journal of Hydrogen Energy, 37, 1927 – 1938.

Huiyong, K. Mikyoung P. Kwang, S. (2013). One – dimensional dynamic modeling of a high – pressure water electrolysis system for hydrogen production. International journal of Hydrogen Energy, 38, 2596 – 2609.

Ruuskanen, V. Koponen, J. Kimmo, H. Antti, K. Markku, N. Jero, A. (2017). PEM water electrolyzer model for a power – hardware – in – loop simulator. International Journal of Hydrogen Energy, 42, 10775 – 10784.

Dale, N. Mann, M. Salehfar, H. (2008). Semiempirical model based on the thermodynamic principles for determining 6 kW proton exchange membrane electrolyzer stack characteristics. Journal of Power Sources, 185, 1348 – 1353.

Espinoza, M. Darras, C. Poggi, P. Glises, R. Baucour, P. Rakotondrainibe, A. Besse, S. Serre, P. (2018). Modelling and experimental validation of a 46 kW high pressure water electrolyzer. Renewable Energy, 119, 160 – 173.

Rashid, M., Al Mesfer, K., Naseem, H., & Danish, M. (2015). Hydrogen Production by Water Electrolysis: A Review of Alkaline Water Electrolysis, PEM Water Electrolysis and High Temperature Water Electrolysis. International Journal of Engineering and Advanced Technology, 4, 80-93.

Serway, R. Jewett, J. (2009). Física para ciencias e ingeniería con Física Moderna Volumen2. México, D. F.: McGraw – Hill.

Olivares, J. M., Campos, M. L., Uribe, J., Borja, E., & Castellanos, R. H. Studies on the hydrogen evolution reaction on different stainless steels. International Journal of Hydrogen Energy, 32, pp.3170-3173 (2007).

Ho, C. Chu, T. (1977). Electrical resistivity and thermal conductivity of nine selected AISI stainless steels. Center for information and numerical data analysis and synthesis, report 45.

Allebrod, F., Mollerup, P. L., Chatzichristodoulou, C., & Mogensen, M. B. (2011). Electrical conductivity measurements of aqueous and immobilized potassium hydroxide. In Proceedings (pp. 181ELE).

Ҫengel, Y. Cimbala, J. (2006). Mecánica de fluidos fundamentos y aplicaciones. México, D. F.: McGraw-Hill






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas