Propuesta para Detectar y Procesar la Señal Muscular para la Manipulación de una Prótesis Mioeléctrica
Resumen
Texto completo:
927-945 PDFReferencias
Muhammad Zahak Jamal (2012). Signal Acquisition Using Surface EMG and Circuit Design Considerations for Robotic Prosthesis, Computational Intelligence in Electromyography Analysis - A Perspective on Current Applications and Future Challenges, Dr. Ganesh R. Naik (Ed.), ISBN: 978-953-51-0805-4, InTech, DOI: 10.5772/52556. Available from: http://www.intechopen.com/books/computationalintelligence-in-electromyography-analysis-a-perspective-on-current-applicationsand-
future-challenges/signal-acquisition-using-surface-emg-and-circuit-designconsiderations-for-robotic-prosthesis.
A. Ramírez, R. Muñoz, L. Leija, A. Vera. “Sistema de Entrenamiento Muscular con Retroalimentación Visual”. Pan American Health Care Exchanges. Conference, Workshops, and Exhibits. Long Beach, California. 2006. ISBN 970-94677-0-0.
W. Jingpeng, T. Liqiong and B. John E, “Surface EMG Signal Amplification and Filtering”, International Journal of Computer Applications (0975 – 8887), vol. 82, No. 1, pp. 15-22, 2013.
S. Micera, G. Vannozzi, A. Sabatini, P. Dario. “Improving detection of muscle activation intervals”. IEEE Engineering in Medicine and Biology Magazine. 20(6), pp. 38-46, 2001.
G. Staude, C. Flachenecker, M. Daumer and W. Wolf. “Onset Detection in Surface Electromyographic Signals: A Systematic Comparison of Methods”. EURASIP J. of Applied Signal Processing, 2, pp.67-81, 2001.
J. Drapała, K. Brzostowski, A. Szpala, A. Rutkowska-Kucharska. “Two stage EMG onset detection method”. Archives of Control Sciences. 22(LVIII), No. 4, pp. 427–440, 2012.
S. Solnik, P. Rider, K. Steinweg, P. de Vita and T. Hortobágyi, “Teager-Kaiser Energy Operator Signal Conditioning Improves EMG Onset Detection”. Eur J. of Applied Physiology, 110, pp. 489-498, 2010.
Recommendations for sensor locations in arm or hand muscles [onlne]. (2014, February 20). Available from: http://www.seniam.org/.
R. Merletti. “Standards for reporting EMG data”. Journal of Electromyography and Kinesiology, February 9 (1): III-IV, 1999.
L. Hargrove, K. Englehart and B. Hudgins, “A comparison of surface and intramuscular myoelectric signal classification”, IEEE EMBS Proc. Of the 27th Annual Conf. Int., 2005, pp. 5009-5012.
K. Englehart, B. Hudgins and P. Parker, “A wavelet based continuous
classification scheme for multifunction myoelectric control”, Department of
Electrical and Computer Engineering and the Institute of Biomedical Engineering. University of New Brunswick, Canada, vol. 48, 2001, pp. 302-311.
De Luca, C. J. 2002. “Surface electromyography: Detection and recording”. DelSys Incorporated.
Day, S. 2002. “Important factors in surface EMG measurement. Calgary: Bortech Biomedical Ltd”.
D. Stegeman, H. Hermens. "Surface EMG for non-invasive assessment of muscles (SENIAM)”, Standards for surface electromyography: the European project, pp. 108-112, 2014.
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx