Un estudio sobre la inclusión de Conjuntos Borrosos en Prolog

Norma Verónica Ramírez Pérez, Martín Laguna Estrada

Resumen


Este artículo presenta un estudio de la implementación de Prolog Borrosos, su semántica y sintáctica, con la finalidad de hacer una difusión sobre la combinación de la programación lógica con lógica borrosa que permiten la inclusión de información con razonamiento impreciso e incierto.

Palabras clave: Programación lógica, Prolog, lógica borrosa, razonamiento impreciso.


Texto completo:

93-110 PDF

Referencias


Baldwin, J. F., Martin, T.P. Pilsworth, B.W., "The implantation of FPROLOG: A fuzzy Prolog interpreter", Fuzzy sets and Systems 23, pages 119-129, 1987.

Ciao, Disponible en http://www.ciaohome.org.

Colmerauer, A., "The Birth of Prolog. In the Second ACM-SIGPLAN History of Programming Lan-guages Conference," ACM SIGPLAN Not., pp. 37-52, 1993.

Dubois, D., Prade, H. Possibilistic logic: a retrospective and prospective view. Fuzzy Sets and Systems, pages 3-23, 2004.

Dubois, D., Prade, H., Possibilistic Theory, New York: Plenum, 1988.

Dubois, D. "Forty years of fuzzy sets., Fuzzy sets and System", Vol.

, 2005.

Dubois, D., Prade, H. Fuzzy sets and probability: misundestadings, bridges and gaps, In: Proceedings of the 2nd IEEE international Conference on Fuzzy Systems (FUZZ-IEEE93), San Francisco, CA, 1993.

Fitting, M. "Bilattices and the semantics of logic programming". Journal of Logic Programming, pages 91-116, 1991.

FLOPER: A Fuzzy Logic Programming Environment for Research. http://www.dsi.uclm.es/investigacion/dect/FLOPERpag e.htm, 2010.

GNU-PROLOG. Disponible en http://www.gprolog.org

Julián, P. and Rubio C. "A declarative semantics for Bousi_Prolog”. In PPDP'09: Proceedings of the 11th ACM SIGPLAN, Conference on Principlesand practice of declarative programming, pages 149-160, Coimbra, Portugal, September7-9 2009. ACM.

Guadarrama, S., Muñoz, S. and Vaucheret, C. "Fuzzy PROLOG: A new approach using softconstraint propagation. Fuzzy Sets and Systems", pages 127-150, 2004.

Julián, P., Rubio, C. and Gallardo J. "Bousi_Prolog: a Prolog exten-sion language for flexible query answering". In J. M. Almendros-Jiménez, editor, Proceedings of the Eigh the Spanish Conference on Programming and Computer Languages (PROLE 2008), volume 248of ENTCS, pages 131-147, Gijón, Spain, October 7-10 2009. Elsevier.

Julián,Pascual I. and Rubio, Clemente. "A similarity-based WAM for Bousi_PROLOG. In Bio-Inspired Systems: Computational and Ambient Intelligence (IWANN2009)", volume 5517 of LNCS, pages 245-252, Salamanca, Spain, 10-12 June 2009. SpringerBerlin / Heidelberg.

Ishizuka, M. and Kanai N.," PROLOG-ELF incorporating fuzzy logic". In Aravind K. Joshi, editor, Proceedings of the 9th International Joint Conference on Artificial Intelligence (IJCAI'85), pages 701-703, Los Angeles, CA, USA, August 1985. Morgan Kaufmann. Formato, F., Gerla

G., and Sessa, M. I. "Similarity-based unification. Fundamental Informatic”, 40:1-22, 2000.

Kentel, E. Aral, M.M., 2D Monte Carlo versus 2D fuzzy Monte Carlo health risk assessment, Stochastic Environmental Research on Risk Assessment, Vol. 19, 2005.

Klir, G. J. and Folger, T. A.. Fuzzy sets, Uncertainty, and Information. Prentice-Hall International, NY, 1988.

Klir, G. Yuan, B. Fuzzy sets and fuzzy Logic, Theory and applications ,Prentice Hall PTR ed), New Jersey, 1995.

Kowalski, R. and Kuehner, D. "Resolution with selection function. Artificial Intelligence", pages 227-260, 1970.

Kreinovich, V. Nguyen, H.T., "Which fuzzy logic is the best: Pragmatic approach(and its theorical analysis), Fuzzy Sets and Systems", Vol. 157, No. 5, 2006. Proceedings of the 9th International Joint Conference on Artificial Intelligence (IJCAI'85), pages 701-703,

Lee, R.T.C., Fuzzy logic and the resolution Principle, Journal of the Association for Computing Machinery, 1972.Los Angeles, CA, USA, August 1985. Morgan Kaufmann.

Li, D. and Liu, D. A Fuzzy Prolog Database System. John Wiley & Sons, 1990.

Lloyd, J.W. Foundations of Logic Programming, Springer-Verlag,1987. Fuzzy Sets and Systems", pages 162-181, 2009.

Mares, M. How to handle fuzzy quantities?, Kibernetika, Vol. 13, No. 1, 1977.

Medina, J., Ojeda M. and Vojtáš, P. "A procedural semantics for multi-adjoint logic programming". In P. Brazdil and A. Jorge, editors, Progress in Artificial Intelligence (EPIA'01),volume 2258 of LNAI, pages 290-297. Springer-Verlag, 2001.

Medina, J., Ojeda M., and Vojtás, P. "Multi-adjoint logic programming with continuous semantics". In T. Eiter, W. Faber, and M. Ruszczinski, editors, Logic Programming and Non Monotonic Reasoning (LPNMR'01), volume 2173 of LNAI, pages 351-354. Springer-Verlag, 2001.

Nuel D. Belnap, Jr. "A useful four-valued logic". In J. Michael Dunn and G. Epstein, editors, Modern Uses of Multiple Valued Logic, pages 8-37. D. Reidel Pub. Co., 1977.

Pyton, S. J. The haskell 98 languaje. Journal of functional Programming, 13(1):7-255, January 2003.

Resher, N. Plausible Reasoning . Van Gorcum, Amsterdam, 1976.

Schweizer, B. and A. Sklar. Probabilistic metric spaces. North Holland, Amster-dam, 1983.

Sessa, M. I. "Approximate reasoning by similarity-based SLD resolution". Theoretical ComputerScience, pages 389-426, 2002.

Shenoi, S. and Melton, A. "Proximity relations in the fuzzy relational database model". Fuzzy Sets and Systems, pages 51-62, 1999.

SICS AB. Sictus PROLOG. Disponible en http://www.sictus.se/sictus

SWI-PROLOG, disponible en http://www.swi-PROLOG.org.

Umano, M. "Fuzzy Sets Prolog", preprints of the 2nd. Inter. Fuzzy Systems Assoc. (IFSA) Congress, Tokio, Japan, pages 750-753, 1987.

Vaucheret, C., Guadarrama, S., and Muñoz, S. "Fuzzy PROLOG: A simple general implementation using CLP(R)". In M. Baaz and A. Voronkov, editors, Logic for Programming, Artificial Intelligence,and Reasoning (LPAR'02), volume 2514 of LNCS, pages 450-463, Tbilisi, Georgia, October 14-18 2002. Springer Berlin/Heidelberg.

Vojtáš, P. "Fuzzy logic programming". Fuzzy Sets and Systems, pages 361-370, 2001.

Zadeh, L.A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1978.

Zadeh, L.A. "Fuzzy sets. Information and Control", pages 333-353, 1965.

Zadeh, L.A. "Similarity relations and fuzzy orderings". Information Sciences, pages 177-200, 1971.

Zadeh, L.A., Calculus of Fuzzy restrictions. in: L.A. Zadeh, KS. Fu, Tanaka and M. Shimura, eds. Fuzzy Sets and Their Applications to Congnitive and Decision Processes, Academic Press, New York, 1975.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas