REALIDAD AUMENTADA CON MARCADORES CUADRADOS Y NATURALES PARA NAVEGACIÓN QUIRÚRGICA

Eliana Margarita Aguilar Larrarte, Oscar Andrés Vivas Albán, José María Sabater Navarro

Resumen


Resumen

Este artículo muestra el resultado de pruebas preliminares con librerías y entornos de desarrollo comerciales encaminados a la construcción de una aplicación para navegación quirúrgica en el área de laparoscopia, usando marcadores cuadrados y marcadores naturales extensibles a despliegues en dispositivos móviles y gafas de realidad virtual. Para la renderización de los objetos 3D se usó el Game Engine Unity junto a librerías especializadas para la visión por computador y realidad aumentada como OpenCV, Vuforia y Kudan. Las pruebas preliminares muestran resultados satisfactorios en el seguimiento de marcadores y en la construcción de la información aumentada útil para el cirujano.

Palabras Claves: Aplicaciones móviles, cirugía laparoscópica, realidad aumentada.

 

AUGMENTED REALITY WITH SQUARE AND NATURAL MARKERS FOR SURGICAL NAVIGATION


Abstract

This article shows preliminary tests with libraries and integrated development environments (IDE) aimed at building an application for laparoscopic surgical navigation using square markers and natural feature markers extensible to displays, mobile devices and virtual reality goggles. For the rendering of 3D objects, the Game Engine Unity was used together with specialized libraries for computer vision and augmented reality such as OpenCV, Vuforia and Kudan. Preliminary tests show satisfactory results in the tracking of markers and in the construction of augmented information useful to the surgeon.

Keywords: Augmented reality, laparoscopic surgery, mobile applications.


Texto completo:

67-85 PDF

Referencias


Autorino, R., Cadeddu, J. A., Desai, M. M., Gettman, M., Gill,I. S., Kavoussi, L. R., Lima, E., Montorsi, F., Richstone, L., Stolzenburg, J. U., Laparoendoscopic single-site and natural orifice transluminal endoscopic surgery in urology: a critical analysis of the literature. European Urology 59, 1, pp. 26-45, 2011.

Bae, J. H., Development of smart game based on multi-platform game engine. International Journal of Multimedia and Ubiquitous Engineering 11, 3, pp. 345-350, 2016.

Bruellmann, D. D., H. Tjaden, U. Schwanecke, and P. Barth, An optimized video system for augmented reality in endodontics: a feasibility study, Clinical oral investigations 17, no. 2, pp. 441-448, 2013.

Collins, T., Bartoli, A., Bourdel, N., & Canis, M., Robust, real-time, dense and deformable 3d organ tracking in laparoscopic videos. In International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer International Publishing, pp. 404-412, 2016.

Cukovic, S., Gattullo, M., Pankratz, F., Devedzic, G., Carrab-ba, E., Baizid, K. Marker based vs. natural feature tracking augmented reality visualization of the 3D foot phantom. Electrical and Bio-medical Engineering, Clean Energy and Green Computing 1, 2016.

Cristie, V., Berger, M., Bus, P., Kumar, A., Klein, B., City-heat: visualizing cellular automata-based traffic heat in unity3d, Visualization in High Performance Computing, ACM, 6, SIG-GRAPH, Asia 2015.

De Lacy, A. M., Rattner, D. W., Adelsdorfer, C., Tasende, M. M., Fernández, M., Delgado, S., Sylla, P., Martínez-Palli, G., Transanal natural orifice transluminal endoscopic surgery (notes) rectal resection:“down-to-up” total mesorectal excision (tme)—short-term outcomes in the first 20 cases. Surgical Endoscopy 27, 9, pp. 3165–3172, 2013.

De Paolis, L. T., Ricciardi, F., Dragoni, A. F., Aloisio, G. An augmented reality application for the radio frequency ablation of the liver tumors. In International Conference on Computational Science and Its Applications, Springer, Berlin, Heidelberg, pp. 572-581, 2011.

Duchene, D. A., Moinzadeh, A., Gill, I. S., Clayman, R. V., and Winfield, H. N., Survey of residency training in laparoscopic and robotic surgery. The Journal of Urology 176, pp. 2158–2167, 2016.

Llena, C., S. Folguera, L. Forner, and F. J. Rodríguez Lozano, Implementation of augmented reality in operative dentistry learning. European Journal of Dental Education, 2017.

Furst, J., Fierro, G., Bonnet, P., Culler, D. E., Busico 3d: building simulation and control in unity 3d. 12th ACM Conference on Embedded Network Sensor Systems, ACM, pp. 326–327, 2014.

Gutiérrez Puerto, E.M., Sistema de Realidad Aumentada para la interacción con el Instrumental en el procedimiento de Acceso Venoso Central, Tesis, Universidad Militar Nueva Granada, 2015.

Jamali, S. S., Shiratuddin, M. F., Wong, K. W., Oskam, C. L., Utilising mobile-augmented reality for learning human anatomy. Social and Behavioral Sciences 197, pp. 659–668, 2015.

Kipper, G., Rampolla, J., Augmented Reality: an emerging tech-nologies guide to AR. Elsevier, 2012.

Mahmoud, N., Hostettler, A., Collins, T., Soler, L., Doignon, C., & Montiel, J. M. M. SLAM based Quasi Dense Reconstruction For Minimally Invasive Surgery Scenes, 2017.

Pauly, O., Diotte, B., Fallavollita, P., Weidert, S., Euler, E., & Navab, N. Machine learning-based augmented reality for improved surgical scene understanding. Computerized Medical Imaging and Graphics, pp. 55-60, 2015.

Puerto-Souza, G. A., & Mariottini, G. L. An augmented-reality system for laparoscopic surgery robust to complete occlusions and fast camera motions, In International Conference on Robotics and Automotion, 2013.

Marescaux, J., Diana, M., Next step in minimally invasive surgery: hybrid image-guided surgery. Journal of pediatric surgery 50, pp. 30–36, 2015.

Moreno, M. R., Moraes, T. F., Amorim, P. H., da Silva, J. V. L., Rodriguez, C. A. Virtual open source environment for training and simulation of laparoscopic surgery. XII Work-shop de Informática Médica (WIM2012) XXXII Congresso da Sociedade Brasileira de Computacao, pp. 1–4, 2012.

Narahara, T., Abbruzzese, K. M., Foulds, R. A. Haptic collaboration: biomedical engineering meets digital design, SIGGRAPH 2015, 2015.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas