APROXIMACIÓN AL RECONOCIMIENTO DE EMOCIONES FACIALES BASADO EN POSICIÓN DE PUNTOS DE INTERÉS

Víctor Manuel Álvarez Pato, Ramiro Velázquez Guerrero

Resumen


Resumen

Con las técnicas actuales de reconocimiento facial, es posible descubrir automáticamente las emociones de una persona a través de una imagen de su rostro. Este estudio se vale de una aplicación en línea para detectar algunos puntos de interés en imágenes de rostros que expresan alguna emoción y compara sus posiciones con las de una expresión considerada neutral. Se busca establecer una relación entre el resultado obtenido y el propuesto por la herramienta FACS de Paul Ekman para determinar la viabilidad de un algoritmo de reconocimiento de emociones, así como posibles pautas para su desarrollo.

Palabras Claves: Face++, FACS, reconocimiento de emociones, reconocimiento facial.

 

APPROACH TO THE RECOGNITION OF FACIAL EMOTIONS BASED ON POSITION OF POINTS OF INTEREST


Abstract

With the current facial recognition techniques, it is possible to automatically determine an individual's emotions through a digital image of his face. The present study employs an online API to detect certain landmarks in images of faces affected by some emotion and compares their positions with those of a neutral expression. We seek to establish a relationship between the obtained results and the one proposed by Paul Ekman's FACS tool to determine the viability of an emotion recognition algorithm, as well as some possible guidelines for its development.

Keywords: Emotion recognition, Face++, face recognition, FACS.


Texto completo:

131-141 PDF

Referencias


Ekman, P., & Friesen, W. V., Constants Across Cultures in the Face and Emotion. Journal of Personality and Social Psychology, 1971.

Ekman, P., Friesen, W. V., & Hager, J., The Facial Action Coding System (FACS): A technique for the measurement of facial action. Palo Alto, California: Consulting Psychologists Press, Inc. Ekman, P. Levenson. RW, & Friesen WV, Autonomic nervous system activity distinguishes among emotions. Science, 221, 1208-12, 1983.

Face++ - Cognitive Services - Leading Facial Recognition Technology: https://www.faceplusplus.com/, último acceso junio 2017.

Fan, H., Cao, Z., Jiang, Y., Yin, Q., & Doudou, C., Learning Deep Face Representation. ArXiv preprint arXiv: 1404, pp. 3840, 2014.

Giannakakis, G. et al. Stress and anxiety detection using facial cues from videos. Biomedical Signal Processing and Control, 31, pp. 89-101, 2017.

Hamelin, N., El Moujahid, O., Thaichon, P. Emotion and advertising effectiveness: A novel facial expression analysis approach. Journal of Retailing and Consumer Services. 2017. 36, pp. 103-111.

Hamm, J., Kohler, C.G., Gur, R.C., Verma, R. Automated Facial Action Coding System for dynamic analysis of facial expressions in neuropsychiatric disorders. Journal of Neuroscience Methods, pp. 237-256, 2011.

Krithika L.B, Lakshmi P.G., Student Emotion Recognition System (SERS) for e-learning Improvement Based on Learner Concentration Metric. Procedia Computer Science, 85, pp. 767-776, 2016.

Liong, et al. Spontaneous subtle expression detection and recognition based on facial strain, Signal Processing: Image Communication, 47, pp. 170-182, 2016.

Lyons, M.J. et al. Coding Facial Expressions with Gabor Wavelets. Proceedings, Third IEEE International Conference on Automatic Face and Gesture Recognition. IEEE Computer Society. Nara, Japan, April 1998.

Sariyanidi, E. et al. Automatic Analysis of Facial Affect: A Survey of Registration, Representation, and Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(6), pp. 1113-1133, 2015.

Tarnowski, P., Kołodziej, M., Majkowski, A., Rak, R.J., Emotion recognition using facial expressions, Procedia Computer Science, 108, pp. 1175-1184, 2017.

Wang, N., et al., Facial feature point detection: A comprehensive survey. Neurocomputing, 2017.

Yan,J., Zhang, X., Lei, Z., Li, S. Face detection by structural models, Image and Vision Computing, 32 (10), pp. 790-799, 2014.

Yu, C. & Ko, C., Applying FaceReader to Recognize Consumer Emotions in Graphic Styles, 60, pp.104-109, 2017.

Zhan, S., Tao, Q.& Li, X. Face detection using representation learning, Neurocomputing, 187, 19-26, 2016.

Zhao, W., Chellappa, R., Phillips, P. J., & Rosenfeld, A. Face recognition: A literature survey, ACM computing surveys (CSUR), 35(4), 399-458, 2003.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas