ELEMENTOS DE LOS PARQUES EÓLICOS QUE DEBEN SER CONTROLADOS PARA SU INTERCONEXIÓN CON REDES ELÉCTRICAS

Jorge Eduardo Hernández Miranda, Irvin López García, Eduardo Campero Littlewood, Francisco Beltrán Carbajal, Victor Manuel Jiménez Mondragón

Resumen


Resumen

En este trabajo se presentan los requisitos que los parques eólicos deben cumplir para su interconexión a una red eléctrica en México. El trabajo se enfoca al análisis de los elementos técnicos que requieren de control, que están incluidos en el Código de Red nacional: parámetros de potencia activa y reactiva, límites de operación de voltaje y frecuencia, así como de la metodología de operación del parque eólico durante una contingencia en la red eléctrica o en el propio parque eólico. También se presenta un estudio de algunas alternativas tecnológicas que permiten satisfacer los requisitos establecidos en el Código de Red para una interconexión segura, desde el punto de vista de estabilidad transitoria y aprovechamiento de la energía eólica, entre los parques eólicos y la red nacional.

Palabras Claves: Código de red, oscilaciones de voltaje y frecuencia, parque eólico, potencia activa y reactiva, red eléctrica nacional.

 

ELEMENTS OF THE WIND FARMS THAT MUST BE CONTROLLED FOR THEIR INTERCONNECTION WITH ELECTRICAL NETWORKS


 Abstract

This paper presents the requirements that the wind farms are fulfilled for their interconnection to an electric network in Mexico The work focuses on the analysis of the technical elements that require control, which are included in the National Grid Code: parameters of active and reactive power, voltage and frequency operation limits, as well as the methodology of operation of the wind farm during a contingency in the electric network or in the wind farm itself. It also presents a study of some technological alternatives that allow to satisfy the requirements established in the Grid Code for a secure interconnection, from the point of view of transient stability and use of wind energy, between wind farms and the national grid.

Keywords: Active and reactive power, frequency, grid code, national electric network, voltage sags, wind farm.


Texto completo:

716-729 PDF

Referencias


Abad, G., López, J., Rodriguez, M., Marroyo, L., & Iwanski, G., Doubly fed induction machine: modeling and control for wind energy generation (Vol. 85). John Wiley & Sons, 2011.

Ackermann, T. (Ed.), Wind power in power systems. John Wiley & Sons, 2005.

Akdag, S. A., Guler, O., & Yagci, E., Wind speed extrapolation methods and their effect on energy generation estimation. In Renewable Energy Research and Applications (ICRERA), 2013 International Conference on IEEE, pp. 428-430, 2013.

Chen, Z., Issues of connecting wind farms into power systems. In Transmission and Distribution Conference and Exhibition: Asia and Pacific, 2005 IEEE/PES, pp. 1-6, 2005.

Chompoo-Inwai, C., Lee, W. J., Fuangfoo, P., Williams, M., & Liao, J. R., System impact study for the interconnection of wind generation and utility system. IEEE transactions on Industry Applications, 41(1), pp, 163-168, 2005.

Comisión Reguladora de Energía, Código de Red. CDMX: PDF, pp.144-164, 2016.

DEFU Committee reports 111-E (2nd edition): Connection of wind turbines to low and medium voltage networks, 1998.

Diario Oficial de la Federación, Código de Red. CDMX. PDF, pp. 179, 2016.

Eisa, S. A., Stone, W., & Wedeward, K. (2017, March). Mathematical Modeling, Stability, Bifurcation Analysis, and Simulations of a Type-3 DFIG Wind Turbine's Dynamics with Pitch Control. In Green Technologies Conference (GreenTech), 2017 Ninth Annual IEEE, pp. 334-341, 2017.

El Moursi, M., Joos, G., & Abbey, C., A secondary voltage control strategy for transmission level interconnection of wind generation. IEEE Transactions on Power Electronics,23(3), pp. 1178-1190, 2008.

English version of Technical Regulations TF 3.2.6, Wind turbines connected to grids with voltage below 100 kV –Technical regulations for the properties and the control of wind turbines, Eltra and Ekraft systems, 2004.

Erlich I., Shewarega F., Interaction of large wind power generation plants with the power system, Proc. IEEE Int. Power and Energy Conf., Kuala Lumpur, 2006.

Ferdous, A. M. I., Sheikh, M. R. I., & Shobug, M. A. (2016, December). Controlling of frequency fluctuation of wind turbine generator using wind speed controlled pitch controller. In Electrical, Computer & Telecommunication Engineering (ICECTE), International Conference on IEEE, pp. 1-4, 2016.

Global Wind Energy Council, Global Wind Statistics, 2015: http://www.gwec.net/wp-content/uploads/vip/GWEC-PRstats-2015_LR.pdf.

H. T. Jadhav and Ranjit Roy, A Critical Review on the Grid Integration Issues of DFIG based Wind Farms, National Institute of Technology, Surat, India, 2011.

Heier, S., Wind Energy Conversion Systems, in Grid Integration of Wind Energy: Onshore and Offshore Conversion Systems, John Wiley & Sons, Ltd, Chichester, UK, 2014.

IEC 61400-12: Wind turbine generator systems. Power performance measurement techniques.

IEC 61400-21: Power quality requirements for wind whines, 2001.

Instituto Nacional de Ecología y Cambio Climático: http://www.gob.mx/inecc /acciones-y-programas/gases-y-compuestos-de-efecto-invernadero.

Intergovernmental Panel on Climate Change (ipcc), https://www.ipcc.ch /publications_and_data/ar4/wg1/es/faq-10-3.html.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas