METODOLOGÍA PARA LA IMPLEMENTACIÓN DEL MPM EN VHDL Y LA EMULACIÓN DE AMPLIFICADORES DE POTENCIA EN UNA TARJETA FPGA
Resumen
Resumen
El presente trabajo muestra el diseño e implementación en VHDL del modelo polinomial con memoria que fue seleccionado para la emulación del comportamiento de amplificadores de potencia con el propósito de proporcionar una plataforma de pruebas y evaluación para el modelado matemático y su posterior uso en pre-distorsión digital. Las mediciones de un amplificador real modelo NXP de 10 W medido a 2 GHz se utilizaron para la obtención del modelo matemático el cual fue implementado en una tarjeta de evaluación y desarrollo DSP-FPGA Altera Stratix III. Además el artículo describe el desarrollo de un conjunto de funciones, para la manipulación de números complejos, necesario para la implementación del modelo. Los resultados muestran un desempeño adecuado del modelo en VHDL el cual es capaz de emular las curvas de distorsión en amplitud y fase AM-AM y AM-PM. Finalmente a modo de validación la implementación se compara con una simulación en Matlab.
Palabras Claves: Amplificador de potencia, emulación, FPGA, modelo polinomial con memoria, VHDL.
METHODOLOGY FOR THE IMPLEMENTATION OF THE MPM IN VHDL AND THE EMULATION OF POWER AMPLIFIERS IN AN FPGA CARD
Abstract
This paper shows the design and implementation in VHDL of the memory polynomial model which was selected for emulating the behavior of power amplifiers with the purpose of providing a test and evaluation test bed for mathematical modeling and its later use in digital predistortion. Measurements of a real power amplifier model NXP 10W at 2 GHz were used for obtaining the mathematical model which was implemented in the DSP-FPGA development kit, Stratix III Edition by Altera. This paper also describes the development of a function set for complex numbers manipulation which is needed for the implementation of the model. Results show a correct performance of the VHDL model which can emulate distortion curves for amplitude and phase AM-AM and AM-PM. Finally a comparison is done between VHDL model and Matlab simulation.
Keywords: Emulation, FPGA, Memory polynomial model, Power amplifier, VHDL.
Texto completo:
101-117 PDFReferencias
Cárdenas-Valdez J. R. et al., Local Search Approach to Genetic Programming for RF-PAs Modeling Implemented en FPGA, Results of the Numerical and Evolutionary Optimization Workshop NEO 2015, Springer, pp. 67-88, 2017.
Cárdenas-Valdez J. R. et al., Modeling memory effects in RF power amplifiers applied to a digital pre-distortion algorithm and emulated on a DSP-FPGA board, Integration, the VLSI Journal, Volume 49, pp 49-64, 2015.
Fehri B. and Boumaiza S., Baseband Equivalent Volterra Series for Behavioral Modeling and Digital Predistortion of Power Amplifiers Driven With Wideband Carrier Aggregated Signals, IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 11, pp. 2594-2603, 2014.
Gilabert P.L. et al., Multi-Lookup Table FPGA Implementation of an Adaptive Digital Predistorter for Linearizing RF Power Amplifiers With Memory Effects, IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 2, pp. 372-384, 2008.
Hammi O. et al., A Digital Predistortion System With Extended Correction Bandwidth With Application to LTE-A Nonlinear Power Amplifiers, IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 12, pp. 3487-3495, 2014.
Kiran V., ACPR reduction for better power efficiency using adaptive DPD, 2016 International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, pp. 0495-0498, 2016.
Ku H. y Kenney J. S., Behavioral modeling of nonlinear RF power amplifiers considering memory effects, IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 12, pp. 2495-2504, 2003.
Liu Y.J. et al., A Robust Augmented Complexity-Reduced Generalized Memory Polynomial for Wideband RF Power Amplifiers, IEEE Transactions on Industrial Electronics, vol. 61, no. 5, pp. 2389-2401, 2014.
Mkadem F. et al., Behavioral modeling and digital predistortion of Power Amplifiers with memory using Two Hidden Layers Artificial Neural Networks, 2010 IEEE MTT-S International Microwave Symposium, Anaheim, CA, pp. 656-659, 2010.
Paeth A., Graphics Gems V (Macintosh Version), 1ra ed. Burlington, Elsevier Science, pp. 22-24, 2014.
Moon J. y Kim B., Enhanced Hammerstein Behavioral Model for Broadband Wireless Transmitters, IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 4, pp. 924-933, 2011.
Núñez Pérez J.C. et al., Flexible test bed for the behavioural modelling of power amplifiers, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 33, no. 1/2, pp. 355–375, 2014.
R. N. Braithwaite, A Comparison for a Doherty power amplifier linearized using digital predistortion and feedforward compensation, 2015 IEEE MTT-S International Microwave Symposium, pp. 1-4, Phoenix, AZ, 2015.
Renteria J. et al., A novel configurable FPGA architecture for hardware implementation of multilayer feedforward neural networks suitable for digital pre-distortion technique, 2016 46th European Microwave Conference (EuMC), London, pp. 854-857, 2016.
Roblin P. et al, Concurrent linearization: The state of the art for modeling and linearization of multiband power amplifiers, IEEE Microwave Magazine., vol. 14, no. 7, pp. 74–91, 2013.
Rushton A., VHDL for logic synthesis, 3ra ed. Chichester, John Wiley and Sons, 2011.
Wood J. et al., The Evolution of PA Linearization, IEEE Microwave Magazine, no. 2, pp. 32–40, 2016.
Zhai J. et al., Dynamic Behavioral Modeling of Power Amplifiers Using ANFIS-Based Hammerstein, en IEEE Microwave and Wireless Components Letters, vol. 18, no. 10, pp. 704-706, 2008.
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx