MAXIMUM PRINCIPLE FOR TIME MINIMIZATION OF CIRCUIT DESIGN PROCESS

Alexander Zemliak

Resumen


Abstract

The possibility of applying the maximum principle of Pontryagin to the problem of optimization of electronic circuits is analysed. The presented theoretical approach is directed to a possibility of designing of any analog circuits. It is shown that in spite of the fact that the problem of optimization is formulated as a nonlinear task, and the maximum principle in this case isn't a sufficient condition for obtaining a maximum of the functional, it is possible to obtain the decision in the form of local minima. The relative acceleration of the CPU time for the best strategy found by means of maximum principle compared with the traditional approach is equal two to three orders of magnitude.

Keywords: Circuit optimization; controllable dynamic system; optimization strategies; maximum principle of Pontryagin.


PRINCIPIO MÁXIMO PARA MINIMIZAR EL TIEMPO DEL PROCESO DE DISEÑO DE CIRCUITO


Resumen

Se analiza la posibilidad de aplicar el principio máximo de Pontryagin al problema de la optimización de circuitos electrónicos. Se demuestra que a pesar de que el problema de la optimización es formulado como una tarea no lineal, y el principio máximo en este caso no es una condición suficiente para obtener mínimo del funcional, es posible obtener la decisión en la forma de mínimos locales.  La aceleración relativa del tiempo de cómputo para la mejor estrategia encontrada por medio del principio máximo comparado con el enfoque tradicional es igual de dos a tres órdenes de magnitud.

Palabras Claves: Estrategias de optimización, optimización del circuito, principio máximo de Pontryagin, sistema dinámico controlable.


Texto completo:

1648-1663 PDF

Referencias


Alpaydin, G., Balkir, S. & Dundar, G., An evolutionary approach to automatic synthesis of high performance analog integrated circuits, IEEE Trans. Evolut. Comp. V. 7, 240-252, 2003.

Bourdin, L. & Trélat, E., Pontryagin maximum principle for finite dimensional nonlinear optimal control problems on time scales, SIAM J. Control Opt., V. 51, No. 5, 3781-3813, 2013.

Brayton, R.K., Hachtel, G.D. & Sangiovanni-Vincentelli, A.L. A survey of optimization techniques for integrated-circuit design, Proc. IEEE, V. 69, No. 10, 1334-1362, 1981.

Hershenson, M., Boyd, S., Lee, T. Optimal design of a CMOS op-amp via geometric programming, IEEE Trans. CAD Integr. Circ. Syst., V. 20, 1-21, 2001.

Liu, B., Wang, Y., Yu, Z., Liu, L., Li, M., Wang, Z., Lu, J. & Fernandez, F.V. Analog circuit optimization system based on hybrid evolutionary algorithms, Integr. VLSI J., V. 42 137-148, 2009.

Kashirskiy, I.S. & Trokhimenko, Y.K., General optimization of electronic circuits, Kiev, Tekhnika, 1979.

Neustadt, L.W. Synthesis of time-optimal control systems. J. Math. Analysis Applications, V. 1, No. 2, 484-492, 1960.

Ochotta, E.S., Rutenbar, R.A. & Carley, L.R. Synthesis of high-performance analog circuits in ASTRX/OBLX. IEEE Trans. CAD Integr. Circ. Sys., V. 15, 273–294, 1996.

Osterby, O. & Zlatev, Z. Direct Methods for Sparse Matrices. New York, Springer-Verlag, 1983.

Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V. & Mishchenko, E.F. The Mathematical Theory of Optimal Processes, New York, Interscience Publishers, Inc., 1962.

Rabat, N., Ruehli, A.E., Mahoney, G.W. & Coleman, J.J. A survey of macromodelling, Proc. of IEEE Int. Sym. CAS, 139-143, June 1985.

Ridzuan, M.R.M., Hassan, E.E., Abdullah, A.R., Bahaman, N. & Kadir, A.F.A. A new meta heuristic evolutionary programming (NMEP) in optimizing economic energy dispatch. J. Telecomm. Electron. Comp. Engineer. V. 8, No. 2, 35–40, 2016.

Rizzoli, V., Costanzo, A. & Cecchetti, C. Numerical optimization of broadband nonlinear microwave circuits. Proc. IEEE MTT-S Int. Symp., 335–338, Dallas, USA, May 1990.

Robinson, J. & Rahmat-Samii, Y. Particle swarm optimization in electromagnetic. IEEE Trans. Ant. Prop., V. 52, 397-407, 2004.

Rosen, J.B. Iterative Solution of Nonlinear Optimal Control Problems. J. SIAM, Control Series A, 223-244, 1966.

Ruehli A.E. (Ed.) Circuit Analysis, Simulation and Design, part 2. Amsterdam, Elsevier Science Publishers, 1987.

Zemliak, A. & Markina, T. Behavior of Lyapunov´s function for different strategies of circuit optimization. Int. J. Electronics, V. 102, 619-634, 2015.

Zemliak, A. Maximum principle for problem of circuit optimization. Electronics Letters, V. 52, No. 9, 695-697, 2016.

Srivastava, A., Kachru, T. Sylvester, D. Low-Power-Design Space Exploration Considering Process Variation Using Robust Optimization. IEEE Trans. CAD Integr. Circ. Syst., V. 26, 67-79, 2007.

Stehr, G. Pronath, M., Schenkel, F, Graeb, H. & Antreich, K. Initial sizing of analog integrated circuits by centering within topology-given implicit specifications. Proc. IEEE/ACM Int. Conf. CAD, 241–246, Nov. 2003.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas