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Resumen 

Se analiza la posibilidad de aplicar el principio máximo de Pontryagin al 

problema de la optimización de circuitos electrónicos. Se demuestra que a pesar 

de que el problema de la optimización es formulado como una tarea no lineal, y el 

principio máximo en este caso no es una condición suficiente para obtener mínimo 

del funcional, es posible obtener la decisión en la forma de mínimos locales.  La 

aceleración relativa del tiempo de cómputo para la mejor estrategia encontrada por 

medio del principio máximo comparado con el enfoque tradicional es igual de dos 

a tres órdenes de magnitud.  

Palabras Claves: Estrategias de optimización, optimización del circuito, principio 

máximo de Pontryagin, sistema dinámico controlable. 

 

Abstract 

The possibility of applying the maximum principle of Pontryagin to the problem 

of optimization of electronic circuits is analysed. The presented theoretical 

approach is directed to a possibility of designing of any analog circuits. It is shown 

that in spite of the fact that the problem of optimization is formulated as a nonlinear 

task, and the maximum principle in this case isn't a sufficient condition for obtaining 

a maximum of the functional, it is possible to obtain the decision in the form of local 

minima. The relative acceleration of the CPU time for the best strategy found by 

means of maximum principle compared with the traditional approach is equal two 

to three orders of magnitude. 

Keywords: Circuit optimization; controllable dynamic system; optimization 

strategies; maximum principle of Pontryagin. 
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1. Introduction 

To improve the overall quality of electronic circuit designs, it is very important to 

reduce their design time. Many works devoted to this problem focus on how to 

reduce the number of operations when solving two main problems: circuit analysis 

and numerical optimization. By solving these problems successfully, one can 

reduce the total time required for analog circuit optimization and this fact serves as 

a basis for improving design quality. The methods used to analyse complex 

systems are being improved continuously. Some well-known ideas related to the 

use of a method of sparse matrixes [Osterby, 1983] and decomposition methods 

[Rabat et al., 1985] are used for the reduction of time for the analysis of circuits. 

Some alternative methods such as homotopy methods [Tadeusiewicz, 2013] were 

successfully applied to circuit analysis.  

Different techniques for analog circuit optimization can be classified in two main 

groups: deterministic optimization algorithms and stochastic search algorithms. 

Practical methods of optimization were developed for circuit designing, timing, and 

area optimization [Brayton et al., 1987]. However, classical deterministic 

optimization algorithms may have a number of drawbacks: they may require that a 

good initial point be selected in the parameter space, they may reach an 

unsatisfactory local minimum, and they require that the cost function be continuous 

and differentiable. To overcome these issues, special methods were applied to 

determine the initial point of the process by centering [Stehr et al., 2003] or 

applying geometric programming methods [Hershenson et al., 2001].  

Stochastic search algorithms, especially evolutionary computation algorithms like 

genetic algorithms, differential evaluation, genetic programming, particle swarm 

optimization, etc. have been developed in recent years [Alpaydin et al., 2003], 

[Srivastava et al., 2007], [Liu et al., 2009], [Yengui et al., 2012]. Genetic algorithms 

have been employed as optimization routines for analog circuits due to the ability 

to find a satisfactory solution. A special algorithm defined as a particle swarm 

optimization technique is one of the evolutionary algorithms and competes with 

genetic algorithms. This method is successfully used for electromagnetic problems 

and for optimization of microwave systems [Robinso, 2004], [Ridzuan et al., 2016].  
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A more general formulation of the circuit optimization problem for deterministic 

approach was developed on a heuristic level some decades ago [Kashirskiy, 

1979]. This approach ignored Kirchhoff’s laws for all or part of a circuit during the 

optimization process. The practical aspects of this idea were developed for the 

optimization of microwave circuits [Rizzoli et al., 1990] and for the synthesis of 

high-performance analog circuits [Ochotta et al., 1996] in an extreme case where 

all the equations of the circuit were not solved during the optimization process.  

In work [Zemliak, 2001] the problem of circuit optimization is formulated in terms of 

the theory of optimal control. Thus, the process of circuit optimization was 

generalized and defined as the dynamic controllable system. In this case, the basic 

element is the control vector that changes the structure of the equations of the 

system of optimization process. Thus, there is a set of strategies of optimization 

that have different number of operations and different computing times. The 

introduction and analysis of the function of Lyapunov of the optimization process 

[Zemliak, 2008], [Zemliak, 2015] allows comparison of various strategies of 

optimization and choosing the best of them having minimum processor time. At the 

same time, the problem of searching for the optimal strategy and the 

corresponding optimal trajectory can be solved most appropriately within the 

maximum principle of Pontryagin [Pontryagin et al., 1962]. 

The main complexity of application of the maximum principle consists of the search 

of initial values for auxiliary variables at the solution of the conjugate system of 

equations. Application of the maximum principle in case of linear dynamic systems 

is based on the creation of an iterative process [Neustadt, 1960], [Rosen, 1966]. 

In case of nonlinear systems, the convergence of this process is not guaranteed. 

However, application of the additional approximating [Bourdin, 2013] allows 

constructing sequence of the solutions converging to a limit under certain 

conditions.  

The first step in the problem of possibility of application of maximum principle for 

circuit optimization was presented briefly in [Zemliak, 2016]. In the present work, 

the analysis of the problem is presented in detail in section 2 for two-dimensional 

case and the numerical results are presented in section 3. 
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2. Methods 

Let’s analyse an example of the optimization of the elementary nonlinear circuit 

for which the solution was obtained on the basis of the maximum principle. We will 

consider the simplest nonlinear circuit of a voltage divider, figure 1. 

 

 

Figure 1 Simplest nonlinear voltage divider. 

 

Let us consider that the nonlinear element has the following equation 1.  

     (1) 

 

Where a>0, b>0, a>b,  0V  and 1V  the voltages on an input and an output of 

circuit. We will consider that 0V  is equal 1. We will define the variables x1, x2. 

Rx1  , 
12 Vx  . Thus the vector of phase variables

2RX . In this case the formula 

1 can be replaced with the following equation 2. 

     (2) 

 

We can present the equation 3 of a circuit in the form: 

     0x1xbaxxx,xg 1212211    (3) 

 

The circuit optimization is formulated as a problem of obtaining at the exit of a 

circuit of the defined voltage w. We will determine the cost function of the 

optimization process by the equation 4. 

   22 wxXC       (4) 

 

In this case, the problem of circuit optimization is converted to minimization of the 

cost function  XC . Following theoretical bases that were developed in [Zemliak, 
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2007] we formulate the problem for circuit optimization as a task of search of the 

optimization strategy with a minimum possible CPU time. For this purpose, we 

define the functional, which is subject to minimization, by the equation 5. 

 
T

0

0 dtXfJ      (5) 

 

Where  Xf0  is the function that is conditionally determining the density of a 

number of arithmetic operations in a unit of time t. In that case, integral (equation 

5) defines total number of operations necessary for circuit optimization and is 

proportional to the total CPU time. 

The structure of function  Xf0  cannot be defined. However, we can compute 

CPU time using the possibilities of the compiler. We will further identify the integral 

with CPU time, and therefore, the problem of minimization of CPU time 

corresponds to a problem of minimization of the integral. 

According to [Zemliak, 2001], we introduce the control vector U that consists of 

only one component u(t) for the reviewed example. This component has one of two 

possible values: 0 or 1. The control vector allows to generalise circuit optimization 

process and to define a set of the optimization strategies differing in operations 

number and CPU time. The generalized cost function is defined in this case by the 

equation 6. 

     XXCXF      (6) 

 

Where  X  is an additional penalty function, which can be determined, for 

example, by the equation 7. 

   



M

1j

2

jj XguX     (7) 

Where M is the number of nodes of the circuit. In our case M=1. 

Process of circuit optimization thus can be described by the system (equation 8) 

with restrictions (equation 9). 

 u,x,xf
dt

dx
21i

i  ,  i=1, 2    (8) 
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    0x,xgu1 211                 (9) 

 

Where functions  u,x,xf 21i  are defined by a concrete numerical method of 

optimization. When using a gradient method, these functions are defined by the 

equation 10. 

   XF
δx

δ
u,x,xf

i

21i  , i=1,2    (10) 

 

Where the operator iδ/δx  is defined by the expression: 

 
   

i

p
MK

1Kp pii x

x

x

Xσ

x

Xσ
Xσ

δx

δ

















  

The value u(t)=0 corresponds to the traditional strategy of optimization (TSO). In 

this case in the system (8), there is only one equation for the independent x1 

variable, whereas the variable x2 is defined from the equation 9. The value u(t)=1 

corresponds to the modified traditional strategy of optimization (MTSO) when both 

x1 and x2 variables are independent. In this case, the system (8) includes two 

equations for the independent variables x1 и x2, and the equation 9 disappears. A 

change in the value of function u(t) with 0 on 1 and back can be made at any 

moment and generates a set of various strategies of optimization. Two main 

strategies are defined as follows: 

 TSO, u=0. The equations 8 to 10 are replaced with the following equations 

11 y 12. 

1

2

2

1

dx

dx

dx

C

dt

dx 
     (11) 

 
dt

dx

x

x

dt

t,xdx 1

1

212






    

(12) 

 

Where the derivative 12/dxdx  is defined from the equation 9 and can be 

calculated by the formula: 

  


















1

2

1

1

1

2

4bxcx

2bcx
1

2b

1

dx

dx
, с=a-b 
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 MTSO, u=1. The equations 8 are transformed to the next one: 

    XgXC
δx

δ

dt

dx 2

1

i

i   i=1, 2     (13) 

 

In a general case, the right-hand parts of the equations 8 can be presented in 

equation 14. 

       21122111211 x,xfux,xfu1u,x,xf     

(14) 

         21222121212 x,xfux,xfu1u,x,xf     

 

Where the functions  21ij x,xf  are determined by the following equations 15. 

 
 

  





















1

2

1

12
2111

4bxcx

2bcx
1

b

xw
x,xf

   

 

         221222112 x1xbax1x1x2x,xf      

(15) 

 
 

 

2

1

2

1

1

2

2
2121

4bxcx

bax
1

2b

xw
x,xf























   

 

    

          222122122122 x1xbaxx1x2bxxc2wx2x,xf    

 

According to methodology of the maximum principle, the system of the conjugate 

equations for additional variables 21 ψ,ψ  has the next equations 16. 

   
2

1

212
1

1

2111 ψ
x

u,x,xf
ψ

x

u,x,xf

dt

dψ










     

(16) 

   
2

2

212
1

2

2112 ψ
x

u,x,xf
ψ

x

u,x,xf

dt

dψ










     

 

Where partial derivatives of the functions  u,x,xf 21i , i=1, 2 are calculated by the 

next equations 17. 

   

   3/2

1

2

1

2

1

2111

4bxcx

4awx

x

x,xf
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 2
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x

x,xf
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1
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     3/2
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The Hamiltonian is expressed by the following equation 18. 

   u,x,xfψu,x,xfψH 21222111     (18) 

 

Substituting equation 14 in 18 and doing identical transformations, we obtain the 

following expression for the Hamiltonian, equation 19. 

     21212121221111 ψ,ψ,x,xΦux,xfψx,xfψH   (19) 

Where 

              

           2121212222111211212121 x,xfx,xfψx,xfx,xfψψ,ψ,x,xΦ   

According to the maximum principle, we obtain the next main condition for the 

control function u: 










0Φ1,

0Φ0,
u

     

(20) 

 

The behaviour of the control function u(t) that corresponds to the maximum 

principle is also defined by the behaviour of functions  tψ1  and  tψ2 , which are 

computed from the equations 16.  
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3. Results  

Numerical results were obtained on computer Sony VAIO PCG-V505MFP, 

Windows XP, processor Pentium 4-M, 2.2 GHz with compiler C++. The solution of 

the equations 16 depends on the initial values 10ψ  and 20ψ , which are defined 

within the precision of the common multiplier. One of these constants can be taken 

arbitrarily. Let us define the constant 1ψ10  . The value of the constant 20ψ , 

which corresponds to the correct solution of a task in the conditions of the 

maximum principle 20cψ
 
, can be obtained by iterative procedure. We use the 

iterative procedure on the basis of the gradient method, which minimise the 

functional (5). The minimum value of this functional can be provided by the correct 

value of parameter 20cψ . 

The analysis of the process of optimization for a similar example, which is carried 

out in work [Zemliak, 2002], showed that the TSO (u=0) is the optimal one when 

both initial values of variables 1x  and 2x , ( 10x , 20x ) are positive. In this case 

the number of iterations is equal to 3898, and CPU time is equal to 42.88 msec for 

the initial point 10x =1, 20x =2. At the same time, the negative initial values of the 

variable 2x  significantly lead to other results. In the case of negative initial values 

of the variable 2x , emergence of effect of acceleration of the process of circuit 

optimization is possible [Zemliak, 2002]. This effect accelerates the optimization 

process in many times. It is interesting to check if this result corresponds to the 

maximum principle, figure 2 shows the trajectories of the process of circuit 

optimization with the negative initial value of coordinate 20x , ( 10x =1, 20x = –2). 

The structure of function u(t) that was obtained automatically and corresponds to a 

condition of the maximum principle (20) has one or two points of a rupture that 

corresponds to switching from the trajectory corresponding to MTSO (u=1, a dotted 

curve) on trajectory corresponding to TSO (u=0, a continuous curve). Coordinates 
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of a switching point of tsw depend on the value of 20ψ . The data corresponding to 

the different points of switching from 1 to 11 in figure 2 are presented in table 1. 

 

 

Figure 2 Trajectories of optimisation process with initial point ( 10x =1, 20x = –2) 

         and different values of 20ψ . 

 

Table 1 Data of some strategies with different initial values of variable  tψ2 . 

 

 

A change in the value of 20ψ  from 7.27 to 7.245 leads to reduction of iterations 

number and CPU time from 14.34 to 1.14 ms, but the CPU time is increasing later 

on. That is visible also in figure 3, where the dependence of CPU time of the 

solution of a task from initial value 20ψ  is shown. 

The value 20optψ = 7.245 corresponds to the minimum CPU time Tmin and in this 

case the integral J and the initial value of variable  tψ2  provides the maximum 
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value of a Hamiltonian according to the maximum principle. The gain in time 

computed as time relation for TSO by the minimum time of Tmin thus equal to 37.6 

times.  

 

 

Figure 3 CPU time for different initial values of variable  tψ2 . 

 

Let us define the partial Hamiltonians H(0), H(1) by the equations 21 y 22. 

   ,0x,xfψ,0x,xfψH 21222111(0) 
   

(21) 

   ,1x,xfψ,1x,xfψH 21222111(1)     (22) 

 

Dependencies of the functions H(0)(t), H(1)(t) and  tΦ  for various values of 

parameter 20ψ  are presented in figures 4, 5 y 6. Optimum value of a constant 20ψ  

is equal to 7.245 and corresponds to the results presented in figure 4. 

 

 

Figure 4 Time dependency of functions H(0)(t), H(1)(t) and  tΦ  for optimal parameter 20ψ . 
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Figure 5 Time dependency of functions H(0)(t), H(1)(t) and  tΦ  for non-optimal 

     value of parameter 20ψ , 20opt20 ψψ  . 

 

 

Figure 6 Time dependency of functions H(0)(t), H(1)(t) and  tΦ  for non-optimal 

  value of parameter 20ψ , 20opt20 ψψ  . 

 

In this case the function H(1)(t) passes above the function H(0)(t) from the beginning 

of the process until the point Tsw. At this point both functions become equal, 

function  tΦ  changes a sign, and according to condition (20), value of the control 

function u is changing to 1 on 0. Then, the iterative process comes to the end 

because the criterion for the end of the optimization process is satisfied.   

It is interesting to analyse the behaviour of the functions H(0)(t), H(1)(t) and  tΦ  

with non-optimal initial value 20ψ . In this case, the point of switching the control 

function u from 1 on 0 is not the optimal one. The behaviour of functions H(0)(t), 

H(1)(t) and  tΦ  is shown in figure 5 for other initial value of 20ψ =7.249 that is 

greater than the optimal one. 
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In this case the control function switching happens before an optimum point and 

the time of computing grows till 7.55 msec.     

The behaviour of these functions is given in figure 6 for the initial value of 

20ψ =7.24 that is lesser than the optimal one. In this case the control function 

switching happens after an optimum point and the time of computing grows again 

to 5.67 msec. 

We can see that in this case the optimization process is longer than for the optimal 

value of the parameter 20ψ . 

 

4. Discussion  

The application of the maximum principle gives us the possibility to find the 

optimal structure of the control vector U. It means that the main goal of the problem 

of optimal control theory is achieved on the basis of maximum principle. 

 It is clear that when the point of switching of the control vector differs from the 

optimal one, the value of the Hamiltonian is changing over time. On the other hand 

the Hamiltonian has a permanent when the optimal position of switch point is 

applied. It was obtained two principal results. First, the theoretical justification is 

given for the earlier discovered effect of acceleration of the process of circuit 

optimization in the conditions of a new methodology of design. This justification is 

based on the maximum principle. Second, the analysis of the optimization process 

for the analysed circuit has shown that application of the maximum principle really 

allows for the finding of the optimum structure of the control vector U(t) by means 

of the iterative procedure. We found this structure automatically on the basis of the 

main principle (20). Besides, the considerable reduction of the processor time in 

comparison with the traditional approach is observed when using the maximum 

principle. 

 

5. Conclusions 

The analysis of optimization process of the presented circuit showed that 

application of the maximum principle really allows finding the optimum structure of 
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the control vector U(t) by means of iterative procedure. Thus, considerable 

reduction of CPU time in comparison with traditional approach is observed. 
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