Teorema del valor medio

F. M. José Juárez Palafox

Instituto Tecnológico de Morelia jpalafox.jose@gmail.com

RESUMEN

En el presente trabajo se analiza el Teorema del Valor Medio o Teorema de Lagrange. Se usa el software GeoGebra para la visualización y comprensión de dicho teorema, se propone analizar para funciones polinomiales de tercer grado con coeficientes enteros construidas en forma aleatoria.

PALABRAS CLAVE: Teorema del Valor Medio, Teorema de Lagrange, GeoGebra, funciones polinomiales.

1. INTRODUCCIÓN

En la materia de Cálculo Diferencial en el tema de aplicaciones de la derivada se ve el Teorema del Valor Medio o Teorema de Lagrange. El cual dice (Tomado del libro de la bibliografía)

Teorema del Valor Medio.

Si *f* es continua en el intervalo cerrado [*a*, *b*] y derivable en el intervalo abierto (*a*, *b*), entonces existe un número $c \in (a, b)$ tal que $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Entonces conocida una función *f* que cumpla las hipótesis del teorema, el problema es conocer el valor o valores de *c* que lo cumplan.

Con el software de GeoGebra nos puede ayudar para la visualización y mejor compresión de este teorema.

En la siguiente presentación usaré funciones polinomiales de grado tres, que representan parábolas cúbicas además que sean al azar.

2. MÉTODOS

2.1 PROTOCOLO DE CONSTRUCCIÓN

En GeoGebra existe un comando para expresar funciones polinomiales en forma aleatoria el cual es **PolinomioAleatorio[<Grado> , <Mínimo>, <Máximo>]** este comando da por resultado un polinomio en x de grado indicado en **<Grado>** debe ser entero positivo, los coeficientes son seleccionados al azar entre el valor **<Mínimo>** y el **<Máximo>** establecidos, los cuales los daremos como deslizadores m y n respectivamente.

Entonces en la entrada se escribe: PolinomioAleatorio[3, m, n]

Definiendo previamente los deslizadores m y n. Y se obtiene la gráfica de la Figura 1.

Fig. 1. Representación gráfica de una función polinomial de grado 3.

Después definimos dos deslizadores más, el *a* y el *b*, teniendo cuidado que al mover los deslizadores a sea menor que b, también localizamos los puntos (a, f(a)) y (b, f(b)) y trazamos el segmento entre esos puntos para obtener la Figura 2.

Fig. 2. Representación de segmento que une dos puntos de la función.

Se calcula la derivada de f con el comando Derivada[<Función>], también se calcula la pendiente del segmento dado entre los puntos A y B expresando en la línea de entrada: (y(B)-y(A))/(b-a), donde y(B) es la ordenada del punto B e y(A) es la ordenada del punto A o sea el cociente que se escribió es el valor de $\frac{f(b)-f(a)}{b-a}$

Se traza la línea horizontal y=(y(B)-y(A))/(b-a), después se localiza la intersección entre esta línea y la curva que representa la derivada (puntos C y E de la figura), para obtener la Figura 3.

Se ocultan las gráficas de *f*' y la línea $y = \frac{f(b) - f(a)}{b - a}$, también los puntos C y E. ya que estos son auxiliares para lograr el propósito de la visualización del teorema.

Se localizan los puntos (x(C), f(x(C))) y (x(E), f(x(E))) estos puntos están sobre la

gráfica de *f*, por estos puntos se trazan líneas tangentes a *f* usando la herramienta \swarrow y esas líneas tienen la misma pendiente del segmento entre los puntos A y B. Ahora se localizan los puntos (*x*(*C*),0) y (*x*(*E*),0) los cuales los nombraré como *c*₁, *c*₂ respectivamente.

Se trazan los siguientes segmentos:

Segmento entre los puntos (x(C),0) y (x(C),f(x(C)))

Segmento entre los puntos (x(E),0) y (x(E),f(x(E)))

Segmento entre los puntos (x(A), 0) y A

Segmento entre los puntos (x(B),0) y B

Los anteriores segmentos se pueden trazar con la herramienta segmento entre dos

puntos for también con el comando Segmento[<Extremo (punto)>, <Extremo (punto)>]

Para visualizar la Figura 4

Fig. 4 .Grafica de líneas tangentes a la función con misma pendiente que el segmento dado, visualizado los puntos que satisfacen el Teorema del Valor Medio.

3. RESULTADOS

Con la interpretación gráfica por ejemplo en la Figura 4 se visualiza que el único número que cumple con el teorema es c₁ ya que esta dentro del intervalo (a,b) en cambio c₂ no cumple el teorema, el alumno puede apropiarse de este conocimiento de una manera más fácil ya que la visualización gráfica le podría facilitar el aprendizaje, quizás podemos empezar a explicar de una manera simple con funciones cuadráticas y después ir aumentando el grado de complejidad. También se pude aprovechar esta presentación para explicar el teorema de Rolle.

BIBLIOGRAFÍA.

 Larson, Ron; Edwards, Bruce H. Cálculo 1. De una variable (novena edición). McGraw-Hill Interamericana Editores, México: 2010.